- Что такое удельное электрическое сопротивление
- Удельное сопротивление алюминия
- Понятия, связанные с удельным сопротивлением
- Удельное сопротивление разных металлов
- Удельное сопротивление для распространенных материалов: таблица
- Что означают показатели удельного сопротивления?
- Таблица удельного сопротивления для распространенных проводников
Что такое удельное электрическое сопротивление
Электрический ток I в любом веществе создается движением заряженных частиц в определенном направлении за счет приложения внешней энергии (разности потенциалов U). Каждое вещество обладает индивидуальными свойствами, по-разному влияющими на прохождение тока в нем. Эти свойства оцениваются электрическим сопротивлением R.
Георг Ом эмпирическим путем определил факторы, влияющие на величину электрического сопротивления вещества, вывел формулу его зависимости от напряжения и тока, которая названа его именем. Единица измерения сопротивления в международной системе СИ названа его именем. 1 Ом — это величина сопротивления, замеренного при температуре 0 О С у однородного ртутного столба длиной 106,3 см с площадью поперечного сечения в 1 мм 2 .
Чтобы оценить и применять на практике материалы для изготовления электротехнических устройств, введен термин «удельное сопротивление проводника» . Добавленное прилагательное «удельное» указывает на фактор использования эталонной величины объема, принятой для рассматриваемого вещества. Это позволяет оценивать электрические параметры разных материалов.
При этом учитывают, что сопротивление проводника возрастает при увеличении его длины и уменьшении поперечного сечения. В системе СИ используется объем однородного проводника с длиной 1 метр и поперечным сечением 1м 2 . В технических расчетах применяется устаревшая, но удобная внесистемная единица объема, состоящая из длины 1 метр и площади 1мм 2 . Формула удельного сопротивления ρ представлена на рисунке.
Для определения электрических свойств веществ, введена еще одна характеристика — удельная проводимость б. Она обратно пропорциональна значению удельного сопротивления, определяет способность материала проводить электрический ток: б =1/ρ.
Как удельное сопротивление зависит от температуры
На величину проводимости материала влияет его температура. Разные группы веществ ведут себя не одинаково при нагреве или охлаждении. Это свойство учитывают в электрических проводах, работающих на открытом воздухе в жару и холод.
Материал и удельное сопротивление провода подбираются с учетом условий его эксплуатации.
Возрастание сопротивления проводников прохождению тока при нагреве объясняется тем, что с повышением температуры металла в нем увеличивается интенсивность передвижения атомов и носителей электрических зарядов во всех направлениях, что создает лишние препятствия для движения заряженных частиц в одну сторону, снижает величину их потока.
Если уменьшать температуру металла, то условия для прохождения тока улучшаются. При охлаждении до критической температуры во многих металлах проявляется явление сверхпроводимости, когда их электрическое сопротивление практически равно нулю. Это свойство широко используется в мощных электромагнитах.
Влияние температуры на проводимость металла используется электротехнической промышленностью при изготовлении обыкновенных ламп накаливания. Их нить из нихрома при прохождении тока нагревается до такого состояния, что излучает световой поток. В обычных условиях удельное сопротивление нихрома составляет около 1,05÷1,4 (ом ∙мм 2 )/м.
При включении лампочки под напряжение через нить проходит большой ток, который очень быстро разогревает металл. Одновременно возрастает сопротивление электрической цепи, ограничивающее первоначальный ток до номинального значения, необходимого для получения освещения. Таким способом осуществляется простое регулирование силы тока через нихромовую спираль, отпадает необходимость применения сложной пускорегулирующей аппаратуры, используемой в светодиодных и люминесцентных источниках.
Как используется удельное сопротивление материалов в технике
Цветные благородные металлы обладают лучшими свойствами электрической проводимости. Поэтому ответственные контакты в электротехнических устройствах выполняют из серебра. Но это увеличивает конечную стоимость всего изделия. Наиболее приемлемый вариант — использование более дешевых металлов. Например, удельное сопротивление меди, равное 0,0175 (ом ∙мм 2 )/м, вполне подходит для таких целей.
Благородные металлы — золото, серебро, платина, палладий, иридий, родий, рутений и осмий, получившие название главным образом благодаря высокой химической стойкости и красивому внешнему виду в ювелирных изделиях. Кроме того, золото, серебро и платина обладают высокой пластичностью, а металлы платиновой группы — тугоплавкостью и, как и золото, химической инертностью. Эти достоинства благородных металлов сочетаются.
Медные сплавы, обладающие хорошей проводимостью, используются для изготовления шунтов, ограничивающих протекание больших токов через измерительную головку мощных амперметров.
Удельное сопротивление алюминия 0,026÷0,029 (ом ∙мм 2 )/м чуть выше, чем у меди, но производство и стоимость этого металла ниже. К тому он же легче. Это объясняет его широкое применение в энергетике для изготовления проводов, работающих на открытом воздухе, и жил кабелей.
Удельное сопротивление железа 0,13 (ом ∙мм 2 )/м также допускает его применение для передачи электрического тока, но при этом возникают бо́льшие потери мощности. Стальные сплавы обладают повышенной прочностью. Поэтому в алюминиевые воздушные провода высоковольтных линий электропередач вплетают стальные нити, которые предназначены для противостояния нагрузкам, действующим на разрыв.
Особенно актуально это при образовании наледи на проводах или сильных порывах ветра.
Часть сплавов, например, константин и никелин обладают термостабильными резистивными характеристиками в определенном диапазоне. У никелина удельное электрическое сопротивление практически не меняется от 0 до 100 градусов по Цельсию. Поэтому спирали для реостатов изготавливают из никелина.
В измерительных приборах широко применяется свойство строгого изменения значений удельного сопротивления платины от ее температуры. Если через платиновый проводник пропускать электрический ток от стабилизированного источника напряжения и вычислять значение сопротивления, то оно будет указывать температуру платины. Это позволяет градуировать шкалу в градусах, соответствующих значениям Омам. Этот способ позволяет измерять температуру с точностью до долей градусов.
Иногда для решения практических задач требуется узнать полное или удельное сопротивление кабеля . Для этого в справочниках на кабельную продукцию приводятся значения индуктивного и активного сопротивления одной жилы для каждого значения поперечного сечения. С их помощью рассчитываются допустимые нагрузки, выделяемая теплота, определяются допустимые условия эксплуатации и подбираются эффективные защиты.
На удельную проводимость металлов оказывает влияние способ их обработки. Использование давления для пластической деформации нарушает структуру кристаллической решетки, увеличивает число дефектов и повышает сопротивление. Для его уменьшения применяют рекристаллизационный отжиг.
Растяжения или сжатия металлов вызывают в них упругую деформацию, от которой уменьшаются амплитуды тепловых колебаний электронов, а сопротивление несколько снижается.
При проектировании систем заземления необходимо учитывать удельное сопротивление грунта. Оно имеет отличия в определении от вышеперечисленного метода и измеряется в единицах системы СИ — Ом∙метр. С его помощью оценивают качество растекания электрического тока внутри земли.
Зависимость удельного сопротивления грунта от влажности и температуры почвы:
На удельную проводимость грунта влияют многие факторы, включая влажность почвы, плотность, размеры ее частиц, температуру, концентрацию солей, кислот и щелочей.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Источник
Удельное сопротивление алюминия
Одной из физических величин, используемых в электротехнике, является удельное электрическое сопротивление. Рассматривая удельное сопротивление алюминия, следует помнить, что данная величина характеризует способность какого-либо вещества, препятствовать прохождению через него электрического тока.
Понятия, связанные с удельным сопротивлением
Величина, противоположная удельному сопротивлению, носит наименование удельной проводимости или электропроводности. Обычное электрическое сопротивление свойственно лишь проводнику, а удельное электрическое сопротивление характерно только для того или иного вещества.
Как правило, эта величина рассчитывается для проводника, имеющего однородную структуру. Для определения электрического сопротивления однородных проводников используется формула:
Физический смысл этой величины заключается в определенном сопротивлении однородного проводника с определенной единичной длиной и площадью поперечного сечения. Единицей измерения служит единица системы СИ Ом•м или внесистемная единица Ом•мм2/м. Последняя единица означает, что проводник из однородного вещества, длиной 1 м, имеющий площадь поперечного сечения 1 мм2, будет иметь сопротивление в 1 Ом. Таким образом, удельное сопротивление любого вещества можно вычислить, используя участок электрической цепи, длиной 1 м, поперечное сечение которого будет составлять 1 мм2.
Удельное сопротивление разных металлов
Каждый металл имеет собственные индивидуальные характеристики. Если сравнивать удельное сопротивление алюминия, например с медью, можно отметить, что у меди это значение составляет 0,0175 Ом•мм2/м, а у алюминия – 0,0271Ом•мм2/м. Таким образом, удельное сопротивление алюминия значительно выше, чем у меди. Отсюда следует вывод, что электропроводность меди значительно выше, нежели из алюминия.
На значение удельного сопротивления металлов влияют определенные факторы. Например, при деформациях, нарушается структура кристаллической решетки. Из-за полученных дефектов возрастает сопротивление прохождению электронов внутри проводника. Поэтому, происходит рост удельного сопротивления металла.
Также свое влияние оказывает и температура. При нагревании узлы кристаллической решетки начинают колебаться сильнее, тем самым увеличивая удельное сопротивление. В настоящее время, из-за высокого удельного сопротивления, алюминиевые провода повсеместно заменяются медными, обладающими более высокой проводимостью.
Источник
Удельное сопротивление для распространенных материалов: таблица
Приведенная ниже таблица удельного электрического сопротивления содержит значения удельного сопротивления для многих веществ, широко используемых в электрике и электронике. В частности, она включает в себя удельное сопротивление меди, алюминия, нихрома, стали, никеля и так далее.
Удельное электрическое сопротивление особенно важно, поскольку оно определяет электрические характеристики и, следовательно, пригодность материала для использования во многих электрических компонентах. Например, можно увидеть, что удельное сопротивление меди, удельное сопротивление алюминия, а также нихрома, никеля, серебра, золота и т.д. определяет, где эти металлы используются.
Для того чтобы сравнить способность различных материалов проводить электрический ток, используются показатели удельного сопротивления.
Что означают показатели удельного сопротивления?
Для того чтобы иметь возможность сравнивать удельное сопротивление различных материалов, от таких изделий, как медь и алюминий, до других металлов и веществ, включая висмут, латунь и даже полупроводники, необходимо использовать стандартное измерение.
Единица измерения удельного сопротивления в Международной системе единиц (СИ) — Ом·м.
Единица измерения удельного сопротивления в системе СИ равна такому удельному сопротивлению вещества, при котором однородный проводник длиной 1 м с площадью поперечного сечения 1 м 2 , изготовленный из этого вещества, имеет сопротивление, равное 1 Ом. Соответственно, удельное сопротивление произвольного вещества, выраженное в единицах СИ, численно равно сопротивлению участка электрической цепи, выполненного из данного вещества, длиной 1 м и площадью поперечного сечения 1 м 2
Таблица удельного сопротивления для распространенных проводников
В таблице ниже приведены показатели удельного сопротивления для различных материалов, в частности металлов, используемых для электропроводности.
Показатели удельного сопротивления приведены для таких «популярных» материалов, как медь, алюминий, нихром, сталь, свинец, золото и других.
Материал | Удельное сопротивление, ρ, при 20 °C (Ом·м) | Источник |
---|---|---|
Латунь | ||
Серебро | 1.59×10 −8 | [3][4] |
Медь | 1.68×10 −8 | [5][6] |
Обожжённая медь | 1.72×10 −8 | [7] |
Золото | 2.44×10 −8 | [3] |
Алюминий | 2.65×10 −8 | [3] |
Кальций | 3.36×10 −8 | |
Вольфрам | 5.60×10 −8 | [3] |
Цинк | 5.90×10 −8 | |
Кобальт | 6.24×10 −8 | |
Никель | 6.99×10 −8 | |
Рутений | 7.10×10 −8 | |
Литий | 9.28×10 −8 | |
Железо | 9.70×10 −8 | [3] |
Платина | 1.06×10 −7 | [3] |
Олово | 1.09×10 −7 | |
Тантал | 1.3×10 −7 | |
Галлий | 1.40×10 −7 | |
Ниобий | 1.40×10 −7 | [8] |
Углеродистая сталь (1010) | 1.43×10 −7 | [9] |
Свинец | 2.20×10 −7 | [2][3] |
Галинстан | 2.89×10 −7 | [10] |
Титан | 4.20×10 −7 | |
Электротехническая сталь | 4.60×10 −7 | [11] |
Манганин (сплав) | 4.82×10 −7 | [2] |
Константан (сплав) | 4.90×10 −7 | [2] |
Нержавеющая сталь | 6.90×10 −7 | |
Ртуть | 9.80×10 −7 | [2] |
Марганец | 1.44×10 −6 | |
Нихром (сплав) | 1.10×10 −6 | [2][3] |
Углерод (аморфный) | 5×10 −4 — 8×10 −4 | [3] |
Углерод (графит) параллельно-базальная плоскость | 2.5×10 −6 — 5.0×10 −6 | |
Углерод (графит) перпендикулярно-базальная плоскость | 3×10 −3 | |
Арсенид галлия | 10 −3 to 10 8 | |
Германий | 4.6×10 −1 | [3][4] |
Морская вода | 2.1×10 −1 | |
Вода в плавательном бассейне | 3.3×10 −1 — 4.0×10 −1 | |
Питьевая вода | 2×10 1 — 2×10 3 | |
Кремний | 2.3×10 3 | [2][3] |
Древесина (влажная) | 10 3 — 10 4 | |
Деионизированная вода | 1.8×10 5 | |
Стекло | 10 11 — 10 15 | [3][4] |
Углерод (алмаз) | 10 12 | |
Твердая резина | 10 13 | [3] |
Воздух | 10 9 — 10 15 | |
Древесина (сухая) | 10 14 — 10 16 | |
Сера | 10 15 | [3] |
Плавленый кварц | 7.5×10 17 | [3] |
ПЭТ | 10 21 | |
Тефлон | 10 23 — 10 25 |
Видно, что удельное сопротивление меди и удельное сопротивление латуни оба низкие, и с учетом их стоимости, относительно серебра и золота, они становятся экономически эффективными материалами для использования для многих проводов. Удельное сопротивление меди и простота ее использования привели к тому, что она также используется крайне часто в качестве материала для проводников на печатных платах.
Изредка алюминий и особенно медь используются из-за их низкого удельного сопротивления. Большинство проводов, используемых в наши дни для межсоединений, изготовлены из меди, поскольку она обеспечивает низкий уровень удельного сопротивления при приемлемой стоимости.
Удельное сопротивление золота также важно, поскольку золото используется в некоторых критических областях, несмотря на его стоимость. Часто золотое покрытие встречается на высококачественных слаботочных разъемах, где оно обеспечивает самое низкое сопротивление контактов. Золотое покрытие очень тонкое, но даже в этом случае оно способно обеспечить требуемые характеристики разъемов.
Серебро имеет очень низкий уровень удельного сопротивления, но оно не так широко используется из-за его стоимости и из-за того, что оно тускнеет, что может привести к более высокому сопротивлению контактов.
Однако оно используется в некоторых катушках для радиопередатчиков, где низкое удельное электрическое сопротивление серебра снижает потери. При использовании в таких целях серебро обычно наносилось только на существующий медный провод. Покрытие провода серебром позволило значительно снизить затраты по сравнению с цельным серебряным проводом без существенного снижения производительности.
Другие материалы в таблице удельного электрического сопротивления могут не иметь такого очевидного применения. Тантал фигурирует в таблице, поскольку используется в конденсаторах — никель и палладий используются в торцевых соединениях многих компонентов поверхностного монтажа, таких как конденсаторы.
Кварц находит свое основное применение в качестве пьезоэлектрического резонансного элемента. Кварцевые кристаллы используются в качестве частотоопределяющих элементов во многих осцилляторах, где высокое значение Q позволяет создавать очень стабильные по частоте схемы. Аналогичным образом они используются в высокоэффективных фильтрах. Кварц имеет очень высокий уровень удельного сопротивления и не является хорошим проводником электричества, то есть его относят к категории диэлектрикам.
Источник