Статьи
Удельная теплоёмкость — это количество тепла, которое требуется затратить, чтобы нагреть 1 килограмм вещества на 1 градус по шкале Кельвина (или Цельсия).
Физическая размерность удельной теплоемкости: Дж/(кг·К) = Дж·кг -1 ·К -1 = м 2 ·с -2 ·К -1 .
В таблице приводятся в порядке возрастания значения удельной теплоемкости различных веществ, сплавов, растворов, смесей. Ссылки на источник данный приведены после таблицы.
При пользовании таблицей 1 следует учитывать приближенный характер данных. Для всех веществ удельная теплоемкость зависит от температуры и агрегатного состояния. У сложных объектов (смесей, композитных материалов, продуктов питания) удельная теплоемкость может значительно варьироваться для разных образцов.
Таблица 1. Теплоемкость чистых веществ
Вещество | Агрегатное состояние | Удельная теплоемкость, Дж/(кг·К) |
Золото | твердое | 129 |
Свинец | твердое | 130 |
Иридий | твердое | 134 |
Вольфрам | твердое | 134 |
Платина | твердое | 134 |
Ртуть | жидкое | 139 |
Олово | твердое | 218 |
Серебро | твердое | 234 |
Цинк | твердое | 380 |
Латунь | твердое | 380 |
Медь | твердое | 385 |
Константан | твердое | 410 |
Железо | твердое | 444 |
Сталь | твердое | 460 |
Высоколегированная сталь | твердое | 480 |
Чугун | твердое | 500 |
Никель | твердое | 500 |
Алмаз | твердое | 502 |
Флинт (стекло) | твердое | 503 |
Кронглас (стекло) | твердое | 670 |
Кварцевое стекло | твердое | 703 |
Сера ромбическая | твердое | 710 |
Кварц | твердое | 750 |
Гранит | твердое | 770 |
Фарфор | твердое | 800 |
Цемент | твердое | 800 |
Кальцит | твердое | 800 |
Базальт | твердое | 820 |
Песок | твердое | 835 |
Графит | твердое | 840 |
Кирпич | твердое | 840 |
Оконное стекло | твердое | 840 |
Асбест | твердое | 840 |
Кокс (0. 100 °С) | твердое | 840 |
Известь | твердое | 840 |
Волокно минеральное | твердое | 840 |
Земля (сухая) | твердое | 840 |
Мрамор | твердое | 840 |
Соль поваренная | твердое | 880 |
Слюда | твердое | 880 |
Нефть | жидкое | 880 |
Глина | твердое | 900 |
Соль каменная | твердое | 920 |
Асфальт | твердое | 920 |
Кислород | газообразное | 920 |
Алюминий | твердое | 930 |
Трихлорэтилен | жидкое | 930 |
Абсоцемент | твердое | 960 |
Силикатный кирпич | твердое | 1000 |
Полихлорвинил | твердое | 1000 |
Хлороформ | жидкое | 1000 |
Воздух (сухой) | газообразное | 1005 |
Азот | газообразное | 1042 |
Гипс | твердое | 1090 |
Бетон | твердое | 1130 |
Сахар-песок | 1250 | |
Хлопок | твердое | 1300 |
Каменный уголь | твердое | 1300 |
Бумага (сухая) | твердое | 1340 |
Серная кислота (100%) | жидкое | 1340 |
Сухой лед (твердый CO2) | твердое | 1380 |
Полистирол | твердое | 1380 |
Полиуретан | твердое | 1380 |
Резина (твердая) | твердое | 1420 |
Бензол | жидкое | 1420 |
Текстолит | твердое | 1470 |
Солидол | твердое | 1470 |
Целлюлоза | твердое | 1500 |
Кожа | твердое | 1510 |
Бакелит | твердое | 1590 |
Шерсть | твердое | 1700 |
Машинное масло | жидкое | 1670 |
Пробка | твердое | 1680 |
Толуол | твердое | 1720 |
Винилпласт | твердое | |
Скипидар | жидкое | 1800 |
Бериллий | твердое | 1824 |
Керосин бытовой | жидкое | 1880 |
Пластмасса | твердое | 1900 |
Соляная кислота (17%) | жидкое | 1930 |
Земля (влажная) | твердое | 2000 |
Вода (пар при 100 °C) | газообразное | 2020 |
Бензин | жидкое | 2050 |
Вода (лед при 0 °C) | твердое | 2060 |
Сгущенное молоко | 2061 | |
Деготь каменноугольный | жидкое | 2090 |
Ацетон | жидкое | 2160 |
Сало | 2175 | |
Парафин | жидкое | 2200 |
Древесноволокнистая плита | твердое | 2300 |
Этиленгликоль | жидкое | 2300 |
Этанол (спирт) | жидкое | 2390 |
Дерево (дуб) | твердое | 2400 |
Глицерин | жидкое | 2430 |
Метиловый спирт | жидкое | 2470 |
Говядина жирная | 2510 | |
Патока | 2650 | |
Масло сливочное | 2680 | |
Дерево (пихта) | твердое | 2700 |
Свинина, баранина | 2845 | |
Печень | 3010 | |
Азотная кислота (100%) | жидкое | 3100 |
Яичный белок (куриный) | 3140 | |
Сыр | 3140 | |
Говядина постная | 3220 | |
Мясо птицы | 3300 | |
Картофель | 3430 | |
Тело человека | 3470 | |
Сметана | 3550 | |
Литий | твердое | 3582 |
Яблоки | 3600 | |
Колбаса | 3600 | |
Рыба постная | 3600 | |
Апельсины, лимоны | 3670 | |
Сусло пивное | жидкое | 3927 |
Вода морская (6% соли) | жидкое | 3780 |
Грибы | 3900 | |
Вода морская (3% соли) | жидкое | 3930 |
Вода морская (0,5% соли) | жидкое | 4100 |
Вода | жидкое | 4183 |
Нашатырный спирт | жидкое | 4730 |
Столярный клей | жидкое | 4190 |
Гелий | газообразное | 5190 |
Водород | газообразное | 14300 |
Источники:
- ru.wikipedia.org — Википедия: Удельная теплоемкость;
- alhimik.ru — средняя удельная теплоемкость некоторых твердых материалов при 0. 100 °С, кДж/(кг·К) по данным пособия «Примеры и задачи по курсу процессов и аппаратов химической технологии» под ред. Романкова;
- school.uni-altai.ru — табличные значения наиболее распространенных жидкостей;
- school.uni-altai.ru — табличные значения наиболее распространенных твердых тел;
- dink.ru — удельная теплоемкость при 20 °С;
- mensh.ru — теплоаккумулирующая способность материалов;
- vactekh-holod.ru — удельная теплоемкость твердых веществ и некоторых жидкостей;
- xiron.ru — данные по теплоемкости пищевых продуктов;
- aircon.ru — теплоемкость всяких разных [пищевых] продуктов;
- masters.donntu.edu.ua — теплоемкость углей;
- nglib.ru — средняя удельная теплоемкость твердых тел при комнатной температуре — таблица в книге С.Д. Бескова «Технохимические расчеты» в электронной библиотеке «Нефть и газ» (требуется регистрация). Это наиболее подробный из доступных в интернете справочников.
Таблица 2. Удельная теплоемкость углеродистых сталей марок Сталь 20 и Сталь 40 при высоких температурах (Дж/(кг∙ºC)) От 50 ºC до заданной температуры
Источник
Удельная теплоемкость стали равна 500 Дж/кг `C .
Удельная теплоемкость стали равна 500 Дж/кг `C — значит чтобы нагреть 1 кг стали на 1С необходимо 500Дж энергии
3. да нарушится, т.к. вода обладает большей выталкивающей силой чем керосин поэтому шарик опущенный в керосин перевесит
4. потому, что плотность керосина меньше плотности воды. при тушении водой, керосин поднимется на поверхность воды и будет гореть дальше.
F= р(воды)gV = 1000 * 9,8 * 3,5 *1,5 * 0,2 = 10290 Н
7. Для подъема камня нужно, чтобы равнодействующая всех сил, приложенных к камню, оказалась равной нулю: F = 0 H. На камень действуют: сила тяжести Fm = mg, направлена вниз, сила архимеда Fa = pgV, направлена вверх и искомая сила Fx, направлена вверх. Получим уравнение: 0 = Fx + Fa — Fm, 0 = Fx + pgV — mg, Fx = mg — pgV. Плотность воды p = 1000 кг/м^3. Найдем силу: Fx = 30*10 —
1000*10*0,012 = 300 — 120 = 180 (H). Ответ: 180 Н.
8. : P=p*S*h*g=p*a*b*h*g; p=1000; a=5; b=3; h=0,5; g=9,8.
F=12H; F1=7H; F1=F-p*V*g; V=m/p1; m=P/g; F1=F*(1-p/p1); p=1000; p1=p/(1-F1/F); p1=2400.
выталкивающая сила больше силы приложеной человеком поэтому она не погрузиться под воду
10. V1*p1=V2p2
V2= V1*p1/p2 = (120*10^-6)*800/1000=96*10^-6 м^3 — такой объём воды будет вытеснять это тело
m=pV=1000*96*10^-6=0,096 кг
Источник
Удельная теплоемкость стали равна 500 Дж/кг `C .
Удельная теплоемкость стали равна 500 Дж/кг `C — значит чтобы нагреть 1 кг стали на 1С необходимо 500Дж энергии
3. да нарушится, т.к. вода обладает большей выталкивающей силой чем керосин поэтому шарик опущенный в керосин перевесит
4. потому, что плотность керосина меньше плотности воды. при тушении водой, керосин поднимется на поверхность воды и будет гореть дальше.
F= р(воды)gV = 1000 * 9,8 * 3,5 *1,5 * 0,2 = 10290 Н
7. Для подъема камня нужно, чтобы равнодействующая всех сил, приложенных к камню, оказалась равной нулю: F = 0 H. На камень действуют: сила тяжести Fm = mg, направлена вниз, сила архимеда Fa = pgV, направлена вверх и искомая сила Fx, направлена вверх. Получим уравнение: 0 = Fx + Fa — Fm, 0 = Fx + pgV — mg, Fx = mg — pgV. Плотность воды p = 1000 кг/м^3. Найдем силу: Fx = 30*10 —
1000*10*0,012 = 300 — 120 = 180 (H). Ответ: 180 Н.
8. : P=p*S*h*g=p*a*b*h*g; p=1000; a=5; b=3; h=0,5; g=9,8.
F=12H; F1=7H; F1=F-p*V*g; V=m/p1; m=P/g; F1=F*(1-p/p1); p=1000; p1=p/(1-F1/F); p1=2400.
выталкивающая сила больше силы приложеной человеком поэтому она не погрузиться под воду
10. V1*p1=V2p2
V2= V1*p1/p2 = (120*10^-6)*800/1000=96*10^-6 м^3 — такой объём воды будет вытеснять это тело
m=pV=1000*96*10^-6=0,096 кг
Источник
Удельная теплоемкость стали равна 500 джоулей что это означает
Теплоемкость нержавеющей стали
Удельная теплоемкость стали распространенных марок
В сводной таблице представлена удельная теплоемкость стали распространенных марок: углеродистых, низко- и высоколегированных сталей, а также чугуна при различной температуре.
Приведены значения средней удельной теплоемкости низколегированных сталей, углеродистых сталей при различных температурах, указана теплоемкость высоколегированных сталей с особыми свойствами в зависимости от температуры.
По данным таблицы видно, что значение удельной теплоемкости стали с ростом температуры увеличивается. Следует отметить, что теплоемкость стали при комнатной температуре находится в диапазоне от 440 до 550 Дж/(кг·град); удельная теплоемкость стали в таблице представлена в интервале температуры от 20 до 1000°С.
Удельная теплоемкость стали при различных температурах
Марка стали | Температура, °С | Теплоемкость стали, Дж/(кг·град) |
02Х17Н11М2 | 20…400…600…800 | 470…560…610…650 |
02Х22Н5АМ3 | 20…100…200…300…400 | 480…500…530…550…590 |
03Х24Н6АМ3 (ЗИ130) | 20…100…200…300…400 | 480…500…530…550…570 |
05ХН46МВБЧ (ДИ65) | 100…200…300…400…500…600…700…800 | 445…465…480…490…500…510…515…520 |
06Х12Н3Д | 100…200…300…400 | 523…544…577…594 |
07Х16Н6 (Х16Н6, ЭП288) | 100…200…300…400…500…600…700 | 440…500…550…590…630…670…710 |
08 | 100…200…400…600 | 465…477…510…565 |
08кп | 100…200…300…400…500…600…700…800…900 | 482…498…514…533…555…584…626…695…695 |
08Х13 (0Х13, ЭИ496) | 20 | 462 |
08Х14МФ | 20…100…200…300…400…500…600 | 460…473…502…540…574…682…754 |
08Х17Т (0Х17Т, ЭИ645) | 20 | 462 |
08Х17Н13М2Т (0Х17Н13М2Т) | 20 | 504 |
08Х18Н10 (0Х18Н10) | 20 | 504 |
08Х18Н10Т (0Х18Н10Т, ЭИ914) | 20…100…200…300…400…500…600…700 | 461…494…515…536…549…561…574…595 |
08ГДНФЛ | 100…200…300…400…500…600…700…800…900 | 483…500…517…529…554…571…613…697…693 |
09Х14Н19В2БР1 (ЭИ726) | 20 | 502 |
015Х18М2Б-ВИ (ЭП882-ВИ) | 100…200…300…400 | 473…519…578…636 |
1Х14Н14В2М (ЭИ257) | 20…100…200…300…400…500…600…700 | 461…486…515…536…544…557…590…624 |
4Х5МФ1С (ЭП572) | 20…100…200…300…400…500…600…700…800 | 431…477…519…565…620…703…888…766…749 |
10 | 100…200…400…600 | 465…477…510…565 |
10кп | 100…200…400…600 | 466…479…512…567 |
10Х12Н3М2ФА(Ш) (10Х12Н3М2ФА-А(Ш)) | 100…200…300…400…500 | 510…538…562…588…627 |
10Х13Н3М1Л | 20 | 495 |
10Х17Н13М2Т (Х17Н13М2Т, ЭИ448) | 20 | 504 |
10Х17Н13М3Т (Х17Н13М3Т, ЭИ432) | 20 | 504 |
10Х18Н9Л | 100 | 504 |
10ГН2МФА, 10ГН2МФА-ВД, 10ГН2МФА-Ш | 100…200…300…400 | 469…553…599…628 |
12МХ | 20…200…300…400…500…600…700 | 498…519…569…595…653…733…888 |
12X1МФ (ЭИ575) | 100…200…300…400…500…600…700…800 | 507…597…607…643…695…783…934…1025 |
12Х13 (1Х13) | 20…100…200…300…400…500…600…700…800 | 473…487…506…527…554…586…636…657…666 |
12Х13Г12АС2Н2 (ДИ50) | 100…200…300…400…500…600…700 | 523…559…602…613…648…668…690 |
12Х18Н9 (Х18Н9) | 20 | 504 |
12Х18Н9Т (Х18Н9Т) | 20…100…200…300…400…500…600…700…800 | 469…486…498…511…519…528…532…544…548 |
12Х18Н12Т (Х18Н12Т) | 20…100…200…300…400…500…600…700 | 461…494…515…540…548…561…574…595 |
14Х17Н2 (1Х17Н2, ЭИ268) | 20 | 462 |
15 | 100…200…400…500 | 469…481…523…569 |
15Г | 100…300…500 | 496…538…592 |
15К | 100…200…400…500 | 469…482…524…570 |
15кп | 100…200…300…400…500…600…700…800 | 465…486…515…532…565…586…620…691 |
15Л | 100…200…400…600 | 469…477…515…570 |
15Х2НМФА-А, 15Х2НМФА-А класс 1 | 100…200…300…400 | 490…515…540…569 |
15Х11МФБЛ (1Х11МФБЛ, Х11ЛА) | 100…200…300…400…500…600 | 494…528…574…641…741…867 |
15Х25Т (Х25Т, ЭИ439) | 20 | 462 |
15ХМ | 100 | 486 |
17Х18Н9 | 20 | 504 |
18Х11МНФБ (2Х11МНФБ, ЭП291) | 100…200…300…400…500…600 | 490…540…590…666…766…900 |
18ХГТ | 100…200…300…400…500…600…700…800 | 495…508…525…537…567…588…626…705 |
20 | 100…200…400…500 | 469…481…536…569 |
20Г | 100…200…400…500 | 469…481…536…569 |
20ГСЛ | 100…200…400…500 | 469…482…536…569 |
20К | 100…200…400…500 | 469…482…524…570 |
20Л | 100…200…400…600 | 469…481…536…570 |
20кп | 100…200…300…400…500…600…700…800…900 | 486…498…514…533…555…584…636…703…695 |
20ХМЛ | 100…200…300…400…500 | 498…572…588…612…660 |
20ХМФЛ | 100…200…300…400…500…600 | 498…574…590…615…666…741 |
20Х3МВФ (ЭИ415, ЭИ579) | 100…200…300…400…500…600 | 502…561…611…657…716…754 |
20Х23Н13 (Х23Н13, ЭИ319) | 20 | 538 |
20Х23Н18 (Х23Н18, ЭИ417) | 20 | 538 |
20ХН3А | 100…200…300…400…500…600…700…800 | 494…507…523…536…565…586…624…703 |
22К | 100…200…400…500 | 469…481…519…569 |
25 | 100…200…400…500 | 469…482…524…570 |
25Л | 100…200…400…600 | 469…481…519…570 |
25Х1МФ | 20 | 461 |
25Х2М1Ф (ЭИ723) | 100…200…300…400…500…600 | 536…574…607…632…674…733 |
25ХГСА | 20…100…200…300…400…500…600…700 | 496…504…512…533…554…584…622…693 |
30 | 100…200…300…400…500 | 469…481…544…523…762 |
30Г | 100…200…300…400…500 | 469…481…544…599…762 |
30Л | 100…200…400…600 | 469…481…523…570 |
30Х13 (3Х13) | 20…100…200…300…400…500…600…700…800 | 473…486…504…525…532…586…641…679…691 |
30ХГТ | 100…200…300…400…500…600…700…800 | 495…508…525…537…567…588…626…705 |
30Х | 20…100…200…300…400…500…600…700…800…900 | 482…496…513…532…555…583…620…703…687…678 |
30ХН2МФА (30ХН2МВА) | 20…100…200…300…400 | 466…508…529…567…588 |
30ХН3А | 100…200…300…400…500…600… 700…800…900…1000 | 494…504…518…536…558…587… 657…703…695…687 |
33ХС | 20…100…200…300…400…500…600…700 | 466…508…529…563…599…622…634…664 |
35 | 100…200…400…500 | 469…482…524…570 |
35Л | 100…200…400…600 | 469…481…523…574 |
35ХГСЛ | 100…200…300…400…500…600…700…800…900 | 496…504…512…533…554…584…622…693…689 |
35ХМЛ | 100…200…300…400…500…600…700…800…900 | 479…500…512…529…550…580…617…689…685 |
36Х18Н25С2 (4Х18Н25С2, ЭЯ3С) | 20 | 515 |
40 | 100…200…300…400…600 | 469…481…519…523…574 |
40Г | 100…200…400…600 | 486…481…490…574 |
40Л | 100…200…400…600 | 469…481…523…574 |
40Х10С2М (4Х10С2М, ЭИ107) | 300…400…500 | 532…561…586 |
40Х13 (4Х13) | 20…100…200…300…400…500…600…700…800 | 452…477…502…528…553…578…620…666…691 |
40ХЛ | 100…200…300…400…500…600…700…800…900 | 491…508…525…538…569…588…626…701…689 |
45 | 100…200…400…500 | 469…482…524…574 |
45Г2 | 100…200 | 444…427 |
45Л | 100…200…400…600 | 469…481…523…569 |
45Х14Н14В2М (ЭИ69) | 300…400…500…600 | 507…511…523…528 |
50 | 300…400…500 | 561…641…787 |
50Г | 20…100…200…300…400…500…600…700 | 487…500…517…533…559…584…609…676 |
50Л | 100…200…400…600 | 478…511…511…569 |
55 | 100…200…400…500 | 477…486…523…569 |
60 | 100…200…400…600 | 481…486…528…565 |
ХН35ВТ (ЭИ612) | 100…200…300…400…500…600 | 511…544…569…590…595…595 |
ХН64ВМКЮТЛ (ЗМИ3) | 20…100…200…300…400…500…600… 700…800…900…1000 | 430…450…470…490…515…540…565… 590…625…650…1008 |
ХН65ВКМБЮТЛ (ЭИ539ЛМУ) | 20…100…200…300…400…500…600… 700…800…900…1000 | 424…436…480…493…505…518…548… 596…650…692…710 |
ХН65ВМТЮЛ (ЭИ893Л) | 20…100…200…300…400…500…600…700…800 | 425…430…440…470…500…510…550…615…650 |
ХН65КМВЮТЛ (ЖС6К) | 20…100…200…300…400…500…600…700…800…900 | 380…400…420…445…470…485…515…560…610…660 |
ХН70БДТ (ЭК59) | 100…200…300…400 | 450…475…500…505 |
ХН70КВМЮТЛ (ЦНК17П) | 20 | 440 |
ХН80ТБЮА (ЭИ607А) | 100…200…300…400…500…600 | 494…547…607…678…749…829 |
Х15Н60-Н | 20 | 460 |
Х20Н80-Н | 20 | 460 |
Х23Ю5Т | 20…800 | 480…750 |
Х27Ю5Т | 20…800 | 500…690 |
А12 | 100…300…400…600 | 469…477…515…569 |
Р6М5 | 100…200…300…400…500…600…700 | 440…470…500…550…580…670…900 |
Р18 | 100…200…300…400…500…600…700 | 420…450…470…510…550…610…690 |
У8, У8А | 20…100…200…300…400…500…600…700…800…900 | 477…511…528…548…565…594…624…724…724…703 |
У12, У12А | 20…100…200…300…400…500…600…700…800…900 | 469…503…519…536…553…720…611…712…703…699 |
Теплоемкость нержавеющей стали
1.3.2. Теплоемкость, теплопроводность материалов.
Теплоемкость , это способность накапливать тепловую энергию в материале при его нагревании .
Численно удельная теплоемкость равна энергии, которую нужно ввести в единицу объема материала, чтобы нагреть его на один градус. Размерность удельной теплоемкости [Дж/(кг·К)]. Эта величина экстенсивная, т.е. можно говорить о теплоемкости отдельной молекулы или атома, затем их просуммировать и получить теплоемкость одного грамма или одного моля вещества. Значение теплоемкости зависит от природы материала. Самая высокая теплоемкость у воды 4.2 ·10 3 Дж/(кг·К) или 4.2 кДж/(кГ·К). У подавляющего большинства материалов удельная теплоемкость порядка 1 кДж/(кг·К). Теплоемкость зависит от температуры. Вблизи нуля Кельвина она мала, в рабочем диапазоне температур — слабо меняется с ростом температуры.
Какие-либо скачки теплоемкости связаны со структурной перестройкой тел, например с растянутым плавлением у таких веществ, как парафин. Здесь можно упомянуть пример с парафиновой прогревающей повязкой, когда тепло долго сохраняется за счет высокой теплоемкости парафина и повязка греет длительное время.
Теплоемкость газов хорошо изучена теоретически. Для газов даже введено два типа теплоемкости: при постоянном давлении Cp и при постоянном объеме Cv. Обычно рассматривают теплоемкость, приходящуюся на одну молекулу. Тогда для одноатомного газа Cp=5/2 kT, а Cv=3/2 kT. Почему при постоянном давлении труднее нагревать молекулы? Ясно, что при этом газ расширяется, значит, нужна дополнительная энергия, чтобы нагревать газ при постоянном давлении. Отметим, что для многоатомных газов теплоемкость выше, т.к. при нагревании требуется энергия для вращения молекул, колебаний и т.п.
Приведем выражение для тепловой энергии материала:
Источник