Светильник некомпенсированный что это значит

ПРА — самое сердце светильника

Зачем светильнику ПРА?

Как известно, все используемые источники света делятся на две группы: тепловые и газоразрядные.

Тепловые лампы — это всем известные лампы накаливания. Принцип их работы основан на нагреве металлической спирали при прохождении через нее электрического тока. Они подключаются в сеть непосредственно и не требуют использования специальных устройств для запуска. Лампы накаливания просто вкручиваются в патрон, через который протекает ток 220 Вт.

Газоразрядные источники света, напротив, не могут включаться в сеть непосредственно, а требуют для своей работы использование специальных устройств. Это связано с физикой газового разряда. Так в газоразрядных источниках света с ростом тока напряжение на нём не растёт, а уменьшается, в отличие от других приёмников электрической энергии, где при увеличении подаваемого на них напряжения увеличивается и протекающий через них ток.

Это означает, что если в газоразрядных лампах его не ограничивать ток разряда, он будет лавинообразно расти до тех пор, пока не выйдет из строя одно из трёх звеньев электрической цепи: источник энергии, приёмник или провода, соединяющие источник и приёмник энергии.

Из всего вышеизложенного следует, что включение газоразрядных источников света возможно только совместно с такими устройствами, которые, с одной стороны, обеспечивают подачу напряжения, достаточного для возникновения разряда (т.е. для зажигания лампы), и, с другой стороны, ограничивают ток на уровне, требуемом для нормальной работы лампы. Такие устройства получили название пускорегулирующие аппараты (ПРА).

Читайте также:  Oven safe что значит

Что выбрать электромагнитные или электронные ПРА?

Электромагнитные пускорегулирующие аппараты (ЭМПРА) состоит как минимум из индуктивного балласта и импульсного зажигающего устройства (ИЗУ). Если в комплект входит компенсирующий конденсатор, то эффективность ЭМПРА повышается.

При покупке готового светильника со встроенным ЭМПРА для его подключения не нужны специальные навыки. А вот при совмещении светильника и ЭМПРА необходимы специальные электротехнические познания.

Величина светового потока и потребляемая мощность в светильниках с ЭМПРА зависят от напряжения питающей сети. При работе ЭМПРА может возникать шумовой фон, что может негативно сказываться на настроении покупателей. Еще один минус работы ЭМПРА — реальный срок службы лампы приблизительно в 2-2,5 раза меньше паспортного. И наконец, светильники с ЭМПРА довольно массивные. Например, если средняя масса светильника для лампы мощностью 70Вт около 2кг, то для светильника мощностью 400Вт уже около 9кг. Как правило, при монтаже такого светильника ЭМПРА не подвешивают вместе с лампой, а устанавливают внизу на значительном расстоянии или на специальных креплениях под потолком.

ЭМПРА хороши своей традиционностью, они выпускаются по отработанной в течение многих десятилетий технологии, обеспечивающей приличную надежность. Самым ненадежным элементом ЭМПРА является ИЗУ. Если смириться с перечисленными выше особенностями, то светильник с ЭМПРА обойдется относительно недорого.

В настоящее время реальной альтернативой ЭМПРА стали электронные пускорегулирующие аппараты (ЭПРА), у которых эксплутационные характеристики и эффективность работы намного выше, чем у первых.

Электронные ПРА являются более дорогими по сравнению с электромагнитным ПРА устройствами, однако начальные затраты компенсируются их высокой экономичностью, которая характеризуется:

  • уменьшенным на 30 % энергопотреблением (при сохранении светового потока) за счет повышения светоотдачи лампы на повышенной частоте и более высокого КПД;
  • увеличенным на 50% сроком службы ламп благодаря щадящему режиму работы и пуска;
  • снижением эксплуатационных расходов за счёт сокращения числа заменяемых ламп и отсутствия необходимости замены стартеров;
  • дополнительным энергосбережением до 80% при работе в системах управления светом;
  • возможностью создания систем управления светом.

В связи с повышающимися тарифами на электроэнергию использование ЭПРА для люминесцентных ламп становится все более и более целесообразным. Даже при нынешних ценах на ЭПРА, которые в 5 — 10 раз выше, чем на электромагнитный ПРА и стартёр, ЭПРА окупается за счёт экономии электроэнергии и увеличения срока службы ламп. Специалисты крупнейших светотехнических фирм (Osram, Philips, Motorola и др.) посчитали, что при нынешнем уровне цен электроэнергии и аппаратов срок окупаемости ЭПРА составляет от 1 до 2,5 лет в зависимости от времени работы ламп.

В настоящее время ЭПРА, представленные на рынках России, можно разделить на две группы по ценовому признаку: простые ЭПРА сопоставимые по цене с магнитными балластами (70-80 руб. за ЭПРА 2×40 Вт) и высококачественные ЭПРА по цене намного превосходящие магнитные (350-600 руб. за ЭПРА 2×40 Вт).
Сегмент высококачественных ЭПРА на российском рынке представлен ведущим европейским производителем пускорегулирующей аппаратуры ELT (Испания). Продукцию ELT отличают высокие технические характеристики и надежность в работе, которые обеспечиваются:

  • предварительным подогревом катодов для обеспечения длительного работы лампы без вспышек и мерцания;
  • самозажимными клеммными колодками;
  • возможностью работы до 4 люминесцентных светильников от одного ЭПРА;
  • небольшими размерами и весом ЭПРА, что позволяет его установку рядом со светильником;
  • бесшумный режим работы;
  • гарантийным сроком 3 года на всю продукцию.

В ряде европейских стран (Швеции, Австрии, Голландии, Швейцарии) уже несколько лет более половины выпускаемых светильников с люминесцентными лампами снабжены электронными балластами.

Классификация ПРА и мировые стандарты

В соответствии с общеевропейской классификацией электромагнитные балласты дроссельного типа по уровню потерь мощности подразделяются следующим образом:

  • Класс D — ПРА с максимальными потерями (запрет на продажу с 21 мая 2004 г. на основании Директивы Европейской комиссии № 2000/55/EG);
  • Класс C — стандартные типы ПРА (запрет на продажу с 21 ноября 2006 г. на основании Директивы Европейской комиссии № 2000/55/EG);
  • Класс B1 — ПРА с пониженными потерями относительно стандартных;
  • Класс B2 — ПРА с особо низкими потерями.

Электронные ПРА (ЭПРА) разделены на 3 класса:

  • A3 — нерегулируемые ЭПРА;
  • A2 — нерегулируемые ЭПРА (с потерями меньшими, чем у А3);
  • A1 — регулируемые ЭПРА.

Таким образом, с 2007 года в Европе производители светильников с ЛЛ должны будут комплектовать их только электромагнитными ПРА классов B1, B2 и высокоэкономичными ЭПРА. Заметим, что предприятия России в большинстве случаев производят ПРА самого низкого класса D. Но в дальнейшем, директива комиссии EC, может быть с некоторой задержкой, но неизбежно окажет влияние на производителей и рынок светильников с ЛЛ и в нашей стране. В связи с сокращением объемов применения электромагнитных ПРА в ближайшие годы неизбежно расширится «ниша» для развития рынка ЭПРА. Воспользовавшись этой ситуацией, ряд фирм начал производить так называемые «дешевые ЭПРА нового стандарта», вводя в заблуждение неосведомленных потребителей. Эти аппараты, уже появившиеся на рынке, значительно уступают по качеству ЭПРА ведущих специализированных изготовителей, хорошо известных на мировом рынке, например, производителей из Испании. Нужно ясно представлять себе, что цена ЭПРА может быть резко уменьшена только за счет снижения надежности и потери ряда свойств и функций:

  1. Срок службы «дешевых» ЭПРА (25-30 тыс. часов) примерно в 2 раза меньше, чем у качественных аппаратов.
  2. Схема «дешевых» ЭПРА не обеспечивает предварительный прогрев электродов ЛЛ в пусковой период. «Холодное» зажигание ламп сокращает их нормированный срок службы, особенно при значительном числе циклов «вкл. — выкл.».
  3. «Дешевые» ЭПРА лишены такой важной функции, как автоматическая подрегулировка выходной мощности ЛЛ при колебаниях сетевого напряжения. (Качественные ЭПРА обеспечивают неизменный световой поток ламп в диапазоне колебаний напряжения питания от 200 до 250 В).
  4. Автоматическое отключение ЛЛ в конце срока их службы «дешевыми» ЭПРА не гарантируется.
  5. В противоположность стандартным качественным ЭПРА «дешевые» аппараты могут питаться только переменным током.

Выводы из изложенного выше однозначны: применение «дешевых» ЭПРА приводит к повышению эксплутационных расходов из-за меньшей надежности аппаратов и сокращения срока службы ЛЛ и поэтому не сулит потребителю ничего, кроме экономических убытков.

Источник

Капельный полив и дождевание

Капельная лента, наружные капельницы, капельная трубка, краны и соединители, фильтры, автоматика полива, фитинги, инжекторы, спринклеры, разбрызгиватели, GoldenSpray и многое другое

Что лучше: компенсированное или некомпенсированное

Слово «компенсированная» при продаже капельниц, капельных трубок или (внимание) капельных лент употребляется сейчас примерно в том значении, как слова «живое», «экологически чистое» и «сварено под контролем» при продаже некрафтового пива. То есть — ни живости, ни чистоты, ни контроля там нет, а продажи дэцел увеличиваются. Некоторые потребители даже специально ищут, чтобы было написано «живое». Или «компенсированное».

Смысл капельницы при поливе — в ограничениии скорости потока воды, чтобы вода не лилась неконтролируемой струёй, что происходит в случае «я сам дырок в шланге понатыкаю и будет поливать». Если в шланге сделаны дырки, то по мере удаления от источника воды вылив из дырок снижается. Проще говоря, вся вода выливается ближе к началу шланга, а до конца если и доходит, то в разы меньше. Надо предвидеть ход мысли кулибиных — сделать диаметр дырок увеличивающимся по мере удаления от источника воды. Здесь они вплотную подходят к идее компенсированных капельниц, но упираются в реализацию — требуется уж очень сложный гидравлический расчёт, набор свёрел с шагом в доли миллиметра, и индивидуальный подход к каждой поливаемой грядке. Это долго, муторно, и не масштабируется. Рациональным является установка в дырку лабиринта. Крутясь в лабиринте, поток воды снижает скорость засчёт трения о стенки, и выливается наружу уже не мощной струёй, а тонкой струйкой или отдельными каплями.

Тем не менее, лабиринты имеют тот же недостаток, что и дырки — чем больше давление на входе в лабиринт, тем больше воды на выходе из лабиринта выливается. К примеру, на 50-метровом участке шланга с проколотыми через 1 метр дырками разница в выливе дырок в начале и в конце будет раз в 10-12, а в случае установки капельниц с лабиринтами — всего лишь 5-7%, и то засчёт потери давления в трубе от трения о стенки. Но, 5-7% — это тоже разница. Для точного полива разница в 7% не всегда приемлема. Не только длина линии является проблемой, на вылив капельниц влияют неровный рельеф или необходимость полива растений, находящихся на разных уровнях и ярусах. В понижениях воды выливается больше, на верхних ярусах — меньше. Для решения этих проблем были придуманы компенсированные капельницы.

В компенсированной капельнице, помимо лабиринта (а иногда и вообще без него, но об этом ниже) установлена мембрана из мягкого материала, которая обычно называется силиконовой мембраной. Под действием давления воды мембрана способна деформироваться, перекрывая в большей или меньшей степени выходное отверстие из лабиринта. Простыми словами, чем больше давление в трубе — тем больше мембрана перекрывает отверстие, уменьшая его сечение. Таким образом, на участках магистрали с высоким давлением вода в капельницах проходит через узкое сечение, но с большей скоростью, а на участках с низким давлением — через широкое сечение, но с низкой скоростью.

Например, в нашей системе рядом с насосом давление в трубе — 3 атм., а в 200 метрах от насоса — 1 атм. Обычная капельница с лабиринтом выливала бы в конце системы втрое меньше, чем вначале. Капельница с мембраной выливает одинаково, потому что при 3 атм. через сечение в 1 мм2 вода проходит со скоростью 3 м/с, а при 1 атм. через 3 мм2 — со скоростью 1 м/с. Цифры, конечно, утрированы для наглядности, но смысл именно такой — потеря давления воды в трубе компенсируется увеличением площади сечения выходного отверстия. Именно поэтому капельницы называются «компенсированными«. Легко предположить, что подобную конструкцию с мембраной в обычную эмиттерную капельную ленту засунуть нельзя, поскольку толщина эмиттера должна быть очень велика. Подобная конструкция реализуема в капельных трубках.

Абсолютная, как бы сказала владелица интернет-магазина «Лето в деревне», аксиома — компенсированные капельницы применяются только в системах с принудительным давлением, и не применяются при самотёке. Даже если вам удалось продавить (об этом ниже) компенсированную капельницу самотёком от еврокуба, никакой компенсации у вас не будет, потому что для адекватной работы мембраны нужно давление. Экзерсисы на ютубе московского интернет-магазина «Минифермер» с компенсированными капельницами PCT0108 самотёком от еврокуба, как и советы достать из капельницы мембрану и подрезать её ножом (воды-то не хватает, естественно) — вопросы исключительно дилетантизма. Я, например, тоже ничего не понимаю в инкубаторах. Хотя, поэтому и не продаю их.

Внешние компенсированные капельницы делятся на разборные и неразборные, но это не самое главное их свойство. Компенсированные внешние капельницы бывают двух видов:

  1. Содержащие и лабиринт, и мембрану. Такие капельницы трудно «продавить», давление открытия может достигать 1 атм. Однако, положительное свойство — эти капельницы самые точные по выливу. Пример — израильская ClickTif.
  2. Содержащие только мембрану. Эти капельницы мы называем «капельницы-дырки», потому что вылив их предсказуем менее, чем погода на Ладожском озере. Та же упомянутая в связи с «Минифермером» китайская капельница PCT0108, внешне напоминающая разборную капельницу от NaanDan, может лить и 8, и 10, и 16 литров в час, причём соседние капельницы будут лить по разному. Китайцы, выпуская её, наверняка копировали NaanDan, но что-то пошло не так — не верится, что в Израиле могли выпускать такую дрянь. Разобрав капельницу, вы видите, что никакой точности в зазорах мембраны с корпусом нет, значит и точности вылива быть не может. Но бывают капельницы и хуже — испанские LAGO, например. Там зазоры ещё больше. Тем не менее, основная масса компенсированных капельниц на рынке — именно такие, не содержащие лабиринта.

Все капельницы, не содержащие мембрану, стали называться некомпенсированными — не потому, что они плохие, а потому, что в них потеря давления не компенсируется увеличением сечения выходного отверстия с помощью подвижной мембраны. Плюс некомпенсированных капельниц — они не просто работают при самотёке, а работают ещё точнее, чем компенсированные капельницы без лабиринта. При самотёке потери давления в трубах невелики (скорость маленькая, трение соответственно маленькое), поэтому на участках 20-30 метров разницу в выливе вы не увидите, за исключением уж очень неровного рельефа или склонов.

В заключение несколько прямых советов, потому что все хотят именно прямой совет, а не намёки.

  1. Если вы поливаете самотёком — забудьте о компенсированных капельницах или капельных трубках. Вы можете использовать некомпенсированные или регулируемые капельницы — и это будет лучше, чем компенсированные.
  2. Если вам продают капельную ленту, утверждая, что она компенсированная — можете купить, но продавцу скажите, что он жулик. Лента эта не компенсированная.
  3. Если хотите точного полива, который возможен только при хорошем давлении — не покупайте дешёвые компенсированные капельницы, в которых нет лабиринта.

Вот в целом и вся основная информация о компенсированности, у кого будут вопросы — пишите.

UPD Конечно, я забыл упомянуть т.н. «ручную компенсацию» — это о регулируемых капельницах. По сути, они некомпенсированные, но возможность регулировки теоретически позволяет выровнять вылив по всей неровной системе. Из практики же, выставить вылив регулируемых капельниц хотя бы с допуском 20% — то ещё занятие.

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Источник

Оцените статью