- Что такое сопротивление изоляции кабеля и его нормы Сопротивление изоляции — один из главнейших параметров кабелей и проводов, ведь в ходе эксплуатации силовые и сигнальные кабели всегда подвержены различным внешним воздействиям. Кроме того, помимо внешних воздействий, постоянно присутствует и влияние жил внутри кабеля друг на друга, их электрическое взаимодействие, что непременно приводит к появлению утечек. Добавив сюда факторы, влияющие на качество изоляции, мы получим более цельную картину. По этим причинам кабели всегда защищаются диэлектрической изоляцией, к которой относятся: резина, пвх, бумага, масло и т. д. — в зависимости от назначения кабеля, от рабочего напряжения, от рода тока и т. д. Так, например, подземные распределительные телефонные линии выполняются бронированным лентой кабелем, а некоторые телекоммуникационные кабели заключают в оболочку из алюминия для защиты от внешних токовых помех. Что касается диэлектрических свойств изоляции, то не только они влияют на выбор конкретного материала для того или иного кабеля. Не менее важна термостойкость: резина более стойка к высоким температурам, чем пластмасса, пластмасса — лучше чем бумага и т.д. Так, изоляция кабеля — это защита жил от их влияния друг на друга, от короткого замыкания, от утечек, и от внешних воздействий со стороны окружающей среды. А сопротивление изоляции определяется величиной оного между жилами и между жилой и наружной поверхностью изолирующей оболочки (или между жилой и экраном). Безусловно материал изоляции в процессе эксплуатации кабеля теряет свои былые качества, стареет, разрушается. И одним из показателей этих неблагоприятных изменений является снижение сопротивления изоляции постоянному току. Сопротивление изоляции постоянному току для различных кабелей и проводов нормируется согласно их ГОСТ, что указывается в паспорте на конкретную кабельную продукцию: в лабораторных условиях фиксируется нормальное сопротивление изоляции при температуре окружающей среды в +20°C, после чего сопротивление приводится к длине кабеля в 1 км, что и указывается в технической документации. Так, НЧ-кабели связи имеют минимальное нормируемое сопротивление 5 ГОм/км, а коаксиальные — до 10 ГОм/км. При замерах учитывают, что это приведенная длина для 1 км кабеля, соответственно кусок вдвое длиннее будет иметь вдвое меньшее сопротивление изоляции, а кусок вдвое более короткий — вдове большее. К тому же температура и влажность при замерах оказывают существенное влияние на текущее значение, так что необходимо вводить поправки, специалисты это знают. Говоря о силовых кабелях, учитывают положения ПУЭ п. 1.8.40. Так, силовым кабелям цепей вторичной коммутации и осветительных электропроводок с напряжением до 1000 В приписывается норма от 0,5 МОм для каждой жилы между фазными проводами и между фазным и нулевым проводом и проводом защитного заземления. А для линий с напряжением от 1000 В и выше — норма сопротивления не указывается, но указывается ток утечки в мА. Проводятся специальные испытания, при которых нормируется напряжение проверки. В соответствии с родом тока испытательного оборудования и назначением проверяемого кабеля, с учетом материала его изоляцией — выставляют испытательное напряжение на мегаомметре. Так при помощи мегаомметра и оценивают качество изоляции высоковольтных кабелей. Сопротивление изоляции в 1 МОм на киловольт рабочего напряжения кабеля считается приемлемым, то есть для кабеля, работающего под напряжением в 10 кВ сопротивление в 10 МОм будет принято нормальным по итогу испытаний мегаомметром с проверочным напряжением 2,5 кВ. Измерения сопротивления изоляции проводят регулярно мегаомметром: на мобильных установках — раз в полгода, на объектах повышенной опасности — раз в год, на остальных объектах — раз в три года. Данными измерениями занимаются квалифицированные специалисты. В результате измерений специалистом составляется документ — акт установленного Ростехнадзором образца. По итогу проверки делается заключение о том, нуждается ли объект в ремонте или его работоспособность соответствует требованиям проверки. Если требуется ремонт — проводят ремонт с целью восстановления сопротивления изоляции до нормы. Протокол составляется и по итогам ремонта, после очередных замеров мегаомметром. Источник Умный сайт для вашего энергокомплекса На основе статьи «Measurement of insulation resistance (IR) – 2», http://electrical-engineering-portal.com Оглавление 1. Значения сопротивления изоляции для электрического оборудования и систем (Стандарт PEARL / NETA MTS-1997 Таблица 10.1) Номинальное максимальное напряжение оборудования Класс мегомметра Минимальное значение сопротивления изоляции Правило 1 МОм для значения сопротивления изоляции оборудования В зависимости от номинального напряжения оборудования: 1 кВ = 1 МОм на 1 кВ В соответствии с правилами IE Rules — 1956 Когда в течение одной минуты между каждым из находящихся под напряжением проводников и землей имеется напряжение 1000 В, сопротивление изоляции высоковольтных установок должно быть не ниже 1 МОм или соответствовать указаниям Бюро по стандартизации Индии (Bureau of Indian Standards). Средневольтные и низковольтные установки — Если в течение одной минуты между каждым из находящихся под напряжением проводников и землей имеется напряжение 500 В, сопротивление изоляции средневольтных и низковольтных установок должно быть не ниже 1 МОм или соответствовать указаниям Бюро по стандартизации Индии (Bureau of Indian Standards). В соответствии со спецификациями CBIP допустимые значения составляют 2 МОм на кВ. Средневольтные и низковольтные установки — если в течение одной минуты между каждым из находящихся под напряжением проводников и землей имеется напряжение 500 В, сопротивление изоляции средневольтных и низковольтных установок должно быть не ниже 1 МОм или соответствовать указаниям Бюро по стандартизации Индии (Bureau of Indian Standards). В соответствии со спецификациями CBIP допустимые значения составляют 2 МОм на кВ 2. Значение сопротивления изоляции для трансформатора Тестирование сопротивления изоляции необходимо для определения сопротивления изоляции индивидуальных обмоток относительно земли или между индивидуальными обмотками. При таком тестировании сопротивление изоляции обычно либо измеряется непосредственно в МОм, либо рассчитывается, исходя из прикладываемого напряжения и величины тока утечки. При измерении сопротивления изоляции рекомендуется всегда заземлять корпус (и сердечник). Замкните накоротко каждую обмотку трансформатора на выводах проходного изолятора. После этого проведите измерение сопротивления между каждой обмоткой и всеми остальными заземленными обмотками. Тестирование сопротивления изоляции: между высоковольтной стороной и землей, и между высоковольтной и низковольтной сторонами. HV1 (2, 3) — Низковольтный 1 (2, 3); LV1 (2, 3) — Высоковольтный 1 (2, 3)) При измерении сопротивления изоляции никогда не оставляйте незаземленными обмотки трансформатора. Для измерения сопротивления заземленной обмотки необходимо снять с нее глухое заземление. Если снять заземление невозможно, как в случае некоторых обмоток с глухозаземленными нейтралями, сопротивление изоляции такой обмотки будет невозможно измерить. Считайте их частью заземленного участка цепи. Необходимо проводить тестирование между обмотками и между обмоткой и землей (E). На трехфазных трансформаторах необходимо тестировать обмотку (L1, L2, L3) за вычетом заземления для трансформаторов с соединением «треугольник» или обмотку (L1, L2, L3) с заземлением (Е) и нейтралью (N) для трансформаторов с соединением «звезда». Значение сопротивления изоляции для трансформатора Трансформатор Формула Значение сопротивления изоляции (МОм) = C X E / (√кВА) Трехфазный трансформатор (звезда) Значение сопротивления изоляции (МОм) = C X E (P – n) / (√кВА) Трехфазный трансформатор (треугольник) Значение сопротивления изоляции (МОм) = C X E (P – Р) / (√кВА) Где С = 1,5 для маслозаполненных трансформаторов с масляным баком, 30 для маслозаполненных трансформаторов без масляного бака или для сухих трансформаторов. Коэффициент поправки на температуру (относительно 20°C) Коэффициент поправки на температуру Источник Измерение сопротивления изоляции. Общая методика 2021-03-27 Статьи 2 комментария В соответствии с требованиями нормативно-технической документации, все электроустановки, реконструируемые, либо вновь вводимые в эксплуатацию, должны быть подвергнуты приемо-сдаточным испытаниям согласно ГОСТ Р 50571.16-2019. То есть, испытания должны проводиться после окончания монтажа установки, перед сдачей в эксплуатацию, или после того, как были внесены изменения (дополнения) в уже существующую. По результатам проведения проверки должен составляться технический отчет, в двух экземплярах, куда заносятся все протоколы испытаний. В случае выявления каких-либо дефектов, электротехнической лабораторией выдается перечень замечаний для принятия мер по их устранению. В состав протокола испытаний должны входить следующие данные: Дата заявки на проведение испытания Полное наименование электроустановки и ее составных частей Адрес и название электролаборатории, проводившей испытания Дата и место проведения испытательных мероприятий Место проведения Цели и программа проверки испытаний Условия проведения измерений Результаты проверки При проведении приемо-сдаточных испытаний, важная роль отводится проверке сопротивления изоляции кабелей, электрооборудования, вторичных цепей, о методах измерений которой и пойдет речь дальше. Цель данной проверки заключается в выявлении и устранении возможных нарушений соответствия сопротивления установленным нормам. Помимо этого, в составе комплексных испытаний, проводятся визуальный осмотр, измерение токов короткого замыкания и полного сопротивления петли «фаза-нуль», измерение полного сопротивления заземляющего устройства, проверка соединений между заземлителями и заземленными элементами электрооборудования (металлосвязи) с измерением переходного сопротивления контактного соединения, прогрузка автоматических выключателей напряжением до 1000 В, измерение параметров срабатывания устройств защитного отключения (УЗО). В дальнейшем, после сдачи объекта, периодичность проведения испытаний, согласно ПТЭЭП, должна быть один раз в год для особо опасных объектов и наружных установок, в остальных случаях один раз в три года. Методика проверки сопротивления изоляции Сама методика проверки сопротивления изоляции основывается на том, что к испытуемому объекту подается повышенное испытательное напряжение, в зависимости от объекта измерения, 250 В, 500 В, 1000 В или 2500 В. Сопротивление изоляции определяется на основании измеренного тока утечки и приложенного выпрямленного напряжения. Ток утечки — это ток, протекающий с токоведущих частей, находящихся под напряжением, установки в землю при отсутствии повреждения изоляции. Если изоляции соответствует нормам, то ток утечки не будет превышать допустимые пределы, соответственно и сопротивление будет очень большое. В случае ухудшения характеристик изоляции, обычно в следствии износа, ток утечки будет увеличиваться. При этом в обычном режиме работы эти значения достаточно малы, а вот при воздействии повышенного напряжения ток утечки увеличиваясь, становится при этом током КЗ, а сопротивление изоляции значительно уменьшается. Помимо вышесказанного, на состояние изоляции влияют еще два параметра — коэффициент абсорбции и коэффициент поляризации. Коэффициент абсорбции (DAR) Коэффициент абсорбции определяет степень влажности изоляционного материала. Представляет собой отношение сопротивления, измеренного мегаомметром через 60 сек. с момента приложения напряжения, к отношению сопротивления измеренного через 15 сек. после начала приложения испытательного напряжения от мегаомметра: Кабс = R60/R15. Если изоляция сухая, то коэффициент абсорбции будет значительно превышать единицу, в противном случае коэффициент абсорбции близок к единице. Коэффициент поляризации (PI) Коэффициент поляризации — это отношение сопротивлений, измеренных мегомметром через 600 сек. с момента приложения напряжения и 60 сек. после начала приложения испытательного напряжения от мегомметра: Кпол = R600/R60. Данный коэффициент на основе изменения структуры диэлектрика, способности заряженных частиц перемещаться в диэлектрике под воздействием электрического поля, определяет степень старения изоляции, можно сказать прогнозирует остаточный ресурс. Измерение данного коэффициента не является обязательным при проведении проверки измерения сопротивления изоляции и проводится только в составе комплексных испытаний. Допустимые значения сопротивления изоляции Ниже в таблице приведены минимально допустимые значения сопротивления изоляции для электроустановок, аппаратов, вторичных цепей и электропроводок напряжением до 1000 В. Данные значения приводятся в соответствии с ПУЭ (Правила устройства электроустановок) гл.1.8 и ПТЭЭП (Правила технической эксплуатации электроустановок потребителей) приложение 3; 3.1 Наименование элемента Напряжение мегаомметра, В Сопротивление изоляции, МОм Примечание Электроизделия и аппараты на номинальное напряжение, В: Должно соответствовать указаниям изготовителей, но не менее 0,5 При измерениях полупроводниковые приборы в изделиях должны быть зашунтированы до 50 свыше 50 до 100 свыше 100 до 380 свыше 380 100 250 500 — 1000 1000 — 2500 Распределительные устройства, щиты и токопроводы 1000 — 2500 не менее 1 Измерения производятся на каждой секции распределительного устройства Электропроводки, в том числе осветительные сети 1000 не менее 0,5 При измерениях в силовых цепях должны быть приняты меры для предотвращения повреждения устройств, в особенности микроэлектронных и полупроводниковых приборов. В осветительных сетях должны быть вывинчены лампы, штепсельные розетки и выключатели присоединены Вторичные цепи распределительных устройств, цепи питания приводов выключателей и разъединителей, цепи управления, защиты, автоматики, телемеханики и т.п. 1000 не менее 1 Измерения производятся со всеми присоединенными аппаратами (катушки, контакторы, пускатели, выключатели, реле, приборы, вторичные обмотки трансформаторов напряжения и тока) Краны и лифты 1000 не менее 0,5 Производится не реже 1 раза в год Стационарные электроплиты 1000 не менее 1 Производится при нагретом состоянии плиты не реже 1 раза в год Шинки постоянного тока и шинки напряжения на щитах управления 500 — 1000 не менее 10 Производится при отсоединенных цепях Цепи управления, защиты, автоматики, телемеханики, возбуждения машин постоянного тока на напряжение 500 — 1000 В, присоединенных к главным цепям 500 — 1000 не менее 1 Сопротивление изоляции цепей напряжением до 60 В, питающихся от отдельного источника, измеряется мегаомметром на напряжение 500 В и должно быть не менее 0,5 Мом Цепи, содержащие устройства с микроэлектронными элементами, рассчитанные на рабочее напряжение, В: до 60 свыше 60 100 500 не менее 0,5 не менее 0,5 Условия при проведении измерений Измерения проводят в помещениях при температуре 25±10°С и относительной влажности воздуха не более 80%, если в стандартах или технических условиях на кабели, провода, шнуры и оборудование не предусмотрены другие условия. Значение электрического сопротивления изоляции соединительных проводов измерительной схемы должно превышать не менее чем в 20 раз минимально допустимое значение электрического сопротивления изоляции испытуемого изделия. Характеристики изоляции электрооборудования рекомендуется измерять по однотипным схемам и при одинаковой температуре. Сравнение характеристик изоляции должно производиться при одной и той же температуре изоляции или близких ее значениях (разница температур не более 5°С). Если это невозможно, то должен производиться температурный пересчет. Требования безопасности До начала проведения измерений убедитесь в отсутствии напряжения на измеряемом объекте. Перед началом испытаний необходимо убедиться в отсутствии людей, работающих на той части электроустановки, к которой присоединен испытательный прибор, запретить находящимся вблизи него лицам прикасаться к токоведущим частям и, если нужно, выставить охрану. Измерение сопротивления изоляции мегаомметром должно осуществляться на отключенных токоведущих частях, с которых снят заряд путем предварительного их заземления. Заземление с токоведущих частей следует снимать только после подключения мегаомметра. При измерении мегаомметром сопротивления изоляции токоведущих частей соединительные провода следует присоединять к ним с помощью изолирующих держателей (штанг). При работе с мегаомметром прикасаться к токоведущим частям, к которым он присоединен, не разрешается. После окончания работы следует снять с токоведущих частей остаточный заряд путем их кратковременного заземления. Подготовка к выполнению измерений При подготовке к измерениям необходимо выполнить ряд технических мероприятий в соответствии с Межотраслевыми правилами по охране труда при эксплуатации электроустановок ПОТ Р М-016-2001, а также требованиями ГОСТ 12.3.019-80 (Система стандартов безопасности труда (ССБТ). Испытания и измерения электрические. Общие требования безопасности). При проведении испытаний руководствоваться требованиями Инструкции по охране труда при измерении сопротивления изоляции. Измерения должны проводиться мегаомметрами различного типа и на различное напряжение, в зависимости от требований испытательного напряжения. Проверить срок действия госповерки на мегаомметр. При выполнении периодических профилактических работ в электроустановках, а так же при выполнении работ на реконструируемых объектах в электроустановках, подготовку рабочего места выполняет персонал предприятия, где выполняется работа. Перед началом измерений необходимо изучить электроустановку здания и убедиться в отсутствии напряжения на испытываемом объекте, принять меры препятствующие допуску на испытуемый объект лиц, не участвующих в испытаниях, при необходимости выставить наблюдающего. Произвести отключение электроприборов, снять предохранители, отключить аппараты (автоматические выключатели, переключатели), отсоединить электронные схемы и электронные приборы, электрические части электроустановки с пониженной изоляцией или пониженным испытательным напряжением. Проверить исправность мегаомметра. Мегаомметры В качестве измерительных приборов применяются мегаомметры стрелочные аналогового типа, например М4100, ЭСО202 либо цифровые приборы, в последнее время получившие большое распространение. Но в независимости от типа, все мегаомметры должны иметь действующие документы об их поверке или аттестации. Выполнение измерений Измерения сопротивления изоляции проводятся методом прямого измерения сопротивления между каждой токопроводящей жилой, одной токопроводящей жилой и остальными жилами, соединенными между собой и относительно земли (заземляющей шины). Для кабелей с металлической оболочкой, экраном или броней — между каждой токопроводящей жилой и остальными жилами, соединенными между собой и оболочкой, экраном, или броней. Для электроустановок измерения проводят между всеми изолированными частями. Для того, чтобы исключить влияние поверхностных токов при измерении сопротивления, необходимо использовать трёхпроводный метод измерения. Сопротивление изоляции, измеренное при испытательном напряжении считается удовлетворительным, если оно соответствует минимально допустимым значениям, которые приведены в таблице. Если результаты замеров показали значения, отличные от данных допустимых значений, необходимо выполнить повторные измерения с отсоединением кабелей, проводов и шнуров от зажимов потребителей и разведением токоведущих жил. Значение показаний мегаомметра фиксируются по истечении 1 мин. с момента приложения измерительного напряжения, но не более чем через 5 мин, если в стандартах или технических условиях на конкретные кабельные изделия или на другое измеряемое оборудование не предусмотрены другие требования. Для повторного замера все металлические элементы кабельного изделия должны быть заземлены не менее чем за 2 мин. При проведении замеров, должны учитываться погрешности, обусловленные погрешностями измерительных приборов и аппаратов, дополнительными емкостями и индуктивными связями между элементами измерительной схемы, воздействием температуры, влиянием внешних электромагнитных и электростатических полей на измерительное устройство, погрешностями метода и т.п Пример протокола измерения сопротивления изоляции Источник
- Умный сайт для вашего энергокомплекса
- 1. Значения сопротивления изоляции для электрического оборудования и систем
- 2. Значение сопротивления изоляции для трансформатора
- Значение сопротивления изоляции для трансформатора
- Коэффициент поправки на температуру (относительно 20°C)
- Измерение сопротивления изоляции. Общая методика
- Методика проверки сопротивления изоляции
- Коэффициент абсорбции (DAR)
- Коэффициент поляризации (PI)
- Допустимые значения сопротивления изоляции
- Условия при проведении измерений
- Требования безопасности
- Подготовка к выполнению измерений
- Мегаомметры
- Выполнение измерений
Что такое сопротивление изоляции кабеля и его нормы
Сопротивление изоляции — один из главнейших параметров кабелей и проводов, ведь в ходе эксплуатации силовые и сигнальные кабели всегда подвержены различным внешним воздействиям. Кроме того, помимо внешних воздействий, постоянно присутствует и влияние жил внутри кабеля друг на друга, их электрическое взаимодействие, что непременно приводит к появлению утечек. Добавив сюда факторы, влияющие на качество изоляции, мы получим более цельную картину.
По этим причинам кабели всегда защищаются диэлектрической изоляцией, к которой относятся: резина, пвх, бумага, масло и т. д. — в зависимости от назначения кабеля, от рабочего напряжения, от рода тока и т. д. Так, например, подземные распределительные телефонные линии выполняются бронированным лентой кабелем, а некоторые телекоммуникационные кабели заключают в оболочку из алюминия для защиты от внешних токовых помех.
Что касается диэлектрических свойств изоляции, то не только они влияют на выбор конкретного материала для того или иного кабеля. Не менее важна термостойкость: резина более стойка к высоким температурам, чем пластмасса, пластмасса — лучше чем бумага и т.д.
Так, изоляция кабеля — это защита жил от их влияния друг на друга, от короткого замыкания, от утечек, и от внешних воздействий со стороны окружающей среды. А сопротивление изоляции определяется величиной оного между жилами и между жилой и наружной поверхностью изолирующей оболочки (или между жилой и экраном).
Безусловно материал изоляции в процессе эксплуатации кабеля теряет свои былые качества, стареет, разрушается. И одним из показателей этих неблагоприятных изменений является снижение сопротивления изоляции постоянному току.
Сопротивление изоляции постоянному току для различных кабелей и проводов нормируется согласно их ГОСТ, что указывается в паспорте на конкретную кабельную продукцию: в лабораторных условиях фиксируется нормальное сопротивление изоляции при температуре окружающей среды в +20°C, после чего сопротивление приводится к длине кабеля в 1 км, что и указывается в технической документации.
Так, НЧ-кабели связи имеют минимальное нормируемое сопротивление 5 ГОм/км, а коаксиальные — до 10 ГОм/км. При замерах учитывают, что это приведенная длина для 1 км кабеля, соответственно кусок вдвое длиннее будет иметь вдвое меньшее сопротивление изоляции, а кусок вдвое более короткий — вдове большее. К тому же температура и влажность при замерах оказывают существенное влияние на текущее значение, так что необходимо вводить поправки, специалисты это знают.
Говоря о силовых кабелях, учитывают положения ПУЭ п. 1.8.40. Так, силовым кабелям цепей вторичной коммутации и осветительных электропроводок с напряжением до 1000 В приписывается норма от 0,5 МОм для каждой жилы между фазными проводами и между фазным и нулевым проводом и проводом защитного заземления. А для линий с напряжением от 1000 В и выше — норма сопротивления не указывается, но указывается ток утечки в мА.
Проводятся специальные испытания, при которых нормируется напряжение проверки. В соответствии с родом тока испытательного оборудования и назначением проверяемого кабеля, с учетом материала его изоляцией — выставляют испытательное напряжение на мегаомметре. Так при помощи мегаомметра и оценивают качество изоляции высоковольтных кабелей.
Сопротивление изоляции в 1 МОм на киловольт рабочего напряжения кабеля считается приемлемым, то есть для кабеля, работающего под напряжением в 10 кВ сопротивление в 10 МОм будет принято нормальным по итогу испытаний мегаомметром с проверочным напряжением 2,5 кВ.
Измерения сопротивления изоляции проводят регулярно мегаомметром: на мобильных установках — раз в полгода, на объектах повышенной опасности — раз в год, на остальных объектах — раз в три года. Данными измерениями занимаются квалифицированные специалисты. В результате измерений специалистом составляется документ — акт установленного Ростехнадзором образца.
По итогу проверки делается заключение о том, нуждается ли объект в ремонте или его работоспособность соответствует требованиям проверки. Если требуется ремонт — проводят ремонт с целью восстановления сопротивления изоляции до нормы. Протокол составляется и по итогам ремонта, после очередных замеров мегаомметром.
Источник
Умный сайт для вашего энергокомплекса
На основе статьи «Measurement of insulation resistance (IR) – 2», http://electrical-engineering-portal.com
Оглавление
1. Значения сопротивления изоляции для электрического оборудования и систем
(Стандарт PEARL / NETA MTS-1997 Таблица 10.1)
Номинальное максимальное напряжение оборудования
Класс мегомметра
Минимальное значение сопротивления изоляции
Правило 1 МОм для значения сопротивления изоляции оборудования
В зависимости от номинального напряжения оборудования:
1 кВ = 1 МОм на 1 кВ
В соответствии с правилами IE Rules — 1956
Когда в течение одной минуты между каждым из находящихся под напряжением проводников и землей имеется напряжение 1000 В, сопротивление изоляции высоковольтных установок должно быть не ниже 1 МОм или соответствовать указаниям Бюро по стандартизации Индии (Bureau of Indian Standards). Средневольтные и низковольтные установки — Если в течение одной минуты между каждым из находящихся под напряжением проводников и землей имеется напряжение 500 В, сопротивление изоляции средневольтных и низковольтных установок должно быть не ниже 1 МОм или соответствовать указаниям Бюро по стандартизации Индии (Bureau of Indian Standards). В соответствии со спецификациями CBIP допустимые значения составляют 2 МОм на кВ.
Средневольтные и низковольтные установки — если в течение одной минуты между каждым из находящихся под напряжением проводников и землей имеется напряжение 500 В, сопротивление изоляции средневольтных и низковольтных установок должно быть не ниже 1 МОм или соответствовать указаниям Бюро по стандартизации Индии (Bureau of Indian Standards).
В соответствии со спецификациями CBIP допустимые значения составляют 2 МОм на кВ
2. Значение сопротивления изоляции для трансформатора
Тестирование сопротивления изоляции необходимо для определения сопротивления изоляции индивидуальных обмоток относительно земли или между индивидуальными обмотками. При таком тестировании сопротивление изоляции обычно либо измеряется непосредственно в МОм, либо рассчитывается, исходя из прикладываемого напряжения и величины тока утечки.
При измерении сопротивления изоляции рекомендуется всегда заземлять корпус (и сердечник). Замкните накоротко каждую обмотку трансформатора на выводах проходного изолятора. После этого проведите измерение сопротивления между каждой обмоткой и всеми остальными заземленными обмотками.
Тестирование сопротивления изоляции: между высоковольтной стороной и землей, и между высоковольтной и низковольтной сторонами.
HV1 (2, 3) — Низковольтный 1 (2, 3); LV1 (2, 3) — Высоковольтный 1 (2, 3))
При измерении сопротивления изоляции никогда не оставляйте незаземленными обмотки трансформатора. Для измерения сопротивления заземленной обмотки необходимо снять с нее глухое заземление. Если снять заземление невозможно, как в случае некоторых обмоток с глухозаземленными нейтралями, сопротивление изоляции такой обмотки будет невозможно измерить. Считайте их частью заземленного участка цепи.
Необходимо проводить тестирование между обмотками и между обмоткой и землей (E). На трехфазных трансформаторах необходимо тестировать обмотку (L1, L2, L3) за вычетом заземления для трансформаторов с соединением «треугольник» или обмотку (L1, L2, L3) с заземлением (Е) и нейтралью (N) для трансформаторов с соединением «звезда».
Значение сопротивления изоляции для трансформатора
Трансформатор
Формула
Значение сопротивления изоляции (МОм) = C X E / (√кВА)
Трехфазный трансформатор (звезда)
Значение сопротивления изоляции (МОм) = C X E (P – n) / (√кВА)
Трехфазный трансформатор (треугольник)
Значение сопротивления изоляции (МОм) = C X E (P – Р) / (√кВА)
Где С = 1,5 для маслозаполненных трансформаторов с масляным баком, 30 для маслозаполненных трансформаторов без масляного бака или для сухих трансформаторов.
Коэффициент поправки на температуру (относительно 20°C)
Коэффициент поправки на температуру
Источник
Измерение сопротивления изоляции. Общая методика
2021-03-27 Статьи
2 комментария
В соответствии с требованиями нормативно-технической документации, все электроустановки, реконструируемые, либо вновь вводимые в эксплуатацию, должны быть подвергнуты приемо-сдаточным испытаниям согласно ГОСТ Р 50571.16-2019. То есть, испытания должны проводиться после окончания монтажа установки, перед сдачей в эксплуатацию, или после того, как были внесены изменения (дополнения) в уже существующую.
По результатам проведения проверки должен составляться технический отчет, в двух экземплярах, куда заносятся все протоколы испытаний. В случае выявления каких-либо дефектов, электротехнической лабораторией выдается перечень замечаний для принятия мер по их устранению.
В состав протокола испытаний должны входить следующие данные:
- Дата заявки на проведение испытания
- Полное наименование электроустановки и ее составных частей
- Адрес и название электролаборатории, проводившей испытания
- Дата и место проведения испытательных мероприятий
- Место проведения
- Цели и программа проверки испытаний
- Условия проведения измерений
- Результаты проверки
При проведении приемо-сдаточных испытаний, важная роль отводится проверке сопротивления изоляции кабелей, электрооборудования, вторичных цепей, о методах измерений которой и пойдет речь дальше. Цель данной проверки заключается в выявлении и устранении возможных нарушений соответствия сопротивления установленным нормам.
Помимо этого, в составе комплексных испытаний, проводятся визуальный осмотр, измерение токов короткого замыкания и полного сопротивления петли «фаза-нуль», измерение полного сопротивления заземляющего устройства, проверка соединений между заземлителями и заземленными элементами электрооборудования (металлосвязи) с измерением переходного сопротивления контактного соединения, прогрузка автоматических выключателей напряжением до 1000 В, измерение параметров срабатывания устройств защитного отключения (УЗО).
В дальнейшем, после сдачи объекта, периодичность проведения испытаний, согласно ПТЭЭП, должна быть один раз в год для особо опасных объектов и наружных установок, в остальных случаях один раз в три года.
Методика проверки сопротивления изоляции
Сама методика проверки сопротивления изоляции основывается на том, что к испытуемому объекту подается повышенное испытательное напряжение, в зависимости от объекта измерения, 250 В, 500 В, 1000 В или 2500 В.
Сопротивление изоляции определяется на основании измеренного тока утечки и приложенного выпрямленного напряжения.
Ток утечки — это ток, протекающий с токоведущих частей, находящихся под напряжением, установки в землю при отсутствии повреждения изоляции.
Если изоляции соответствует нормам, то ток утечки не будет превышать допустимые пределы, соответственно и сопротивление будет очень большое. В случае ухудшения характеристик изоляции, обычно в следствии износа, ток утечки будет увеличиваться. При этом в обычном режиме работы эти значения достаточно малы, а вот при воздействии повышенного напряжения ток утечки увеличиваясь, становится при этом током КЗ, а сопротивление изоляции значительно уменьшается.
Помимо вышесказанного, на состояние изоляции влияют еще два параметра — коэффициент абсорбции и коэффициент поляризации.
Коэффициент абсорбции (DAR)
Коэффициент абсорбции определяет степень влажности изоляционного материала. Представляет собой отношение сопротивления, измеренного мегаомметром через 60 сек. с момента приложения напряжения, к отношению сопротивления измеренного через 15 сек. после начала приложения испытательного напряжения от мегаомметра: Кабс = R60/R15.
Если изоляция сухая, то коэффициент абсорбции будет значительно превышать единицу, в противном случае коэффициент абсорбции близок к единице.
Коэффициент поляризации (PI)
Коэффициент поляризации — это отношение сопротивлений, измеренных мегомметром через 600 сек. с момента приложения напряжения и 60 сек. после начала приложения испытательного напряжения от мегомметра: Кпол = R600/R60.
Данный коэффициент на основе изменения структуры диэлектрика, способности заряженных частиц перемещаться в диэлектрике под воздействием электрического поля, определяет степень старения изоляции, можно сказать прогнозирует остаточный ресурс.
Измерение данного коэффициента не является обязательным при проведении проверки измерения сопротивления изоляции и проводится только в составе комплексных испытаний.
Допустимые значения сопротивления изоляции
Ниже в таблице приведены минимально допустимые значения сопротивления изоляции для электроустановок, аппаратов, вторичных цепей и электропроводок напряжением до 1000 В.
Данные значения приводятся в соответствии с ПУЭ (Правила устройства электроустановок) гл.1.8 и ПТЭЭП (Правила технической эксплуатации электроустановок потребителей) приложение 3; 3.1
Наименование элемента | Напряжение мегаомметра, В | Сопротивление изоляции, МОм | Примечание |
Электроизделия и аппараты на номинальное напряжение, В: | Должно соответствовать указаниям изготовителей, но не менее 0,5 | При измерениях полупроводниковые приборы в изделиях должны быть зашунтированы | |
до 50 свыше 50 до 100 свыше 100 до 380 свыше 380 | 100 250 500 — 1000 1000 — 2500 | ||
Распределительные устройства, щиты и токопроводы | 1000 — 2500 | не менее 1 | Измерения производятся на каждой секции распределительного устройства |
Электропроводки, в том числе осветительные сети | 1000 | не менее 0,5 | При измерениях в силовых цепях должны быть приняты меры для предотвращения повреждения устройств, в особенности микроэлектронных и полупроводниковых приборов. В осветительных сетях должны быть вывинчены лампы, штепсельные розетки и выключатели присоединены |
Вторичные цепи распределительных устройств, цепи питания приводов выключателей и разъединителей, цепи управления, защиты, автоматики, телемеханики и т.п. | 1000 | не менее 1 | Измерения производятся со всеми присоединенными аппаратами (катушки, контакторы, пускатели, выключатели, реле, приборы, вторичные обмотки трансформаторов напряжения и тока) |
Краны и лифты | 1000 | не менее 0,5 | Производится не реже 1 раза в год |
Стационарные электроплиты | 1000 | не менее 1 | Производится при нагретом состоянии плиты не реже 1 раза в год |
Шинки постоянного тока и шинки напряжения на щитах управления | 500 — 1000 | не менее 10 | Производится при отсоединенных цепях |
Цепи управления, защиты, автоматики, телемеханики, возбуждения машин постоянного тока на напряжение 500 — 1000 В, присоединенных к главным цепям | 500 — 1000 | не менее 1 | Сопротивление изоляции цепей напряжением до 60 В, питающихся от отдельного источника, измеряется мегаомметром на напряжение 500 В и должно быть не менее 0,5 Мом |
Цепи, содержащие устройства с микроэлектронными элементами, рассчитанные на рабочее напряжение, В: | |||
до 60 свыше 60 | 100 500 | не менее 0,5 не менее 0,5 |
Условия при проведении измерений
Измерения проводят в помещениях при температуре 25±10°С и относительной влажности воздуха не более 80%, если в стандартах или технических условиях на кабели, провода, шнуры и оборудование не предусмотрены другие условия.
Значение электрического сопротивления изоляции соединительных проводов измерительной схемы должно превышать не менее чем в 20 раз минимально допустимое значение электрического сопротивления изоляции испытуемого изделия.
Характеристики изоляции электрооборудования рекомендуется измерять по однотипным схемам и при одинаковой температуре. Сравнение характеристик изоляции должно производиться при одной и той же температуре изоляции или близких ее значениях (разница температур не более 5°С). Если это невозможно, то должен производиться температурный пересчет.
Требования безопасности
- До начала проведения измерений убедитесь в отсутствии напряжения на измеряемом объекте.
- Перед началом испытаний необходимо убедиться в отсутствии людей, работающих на той части электроустановки, к которой присоединен испытательный прибор, запретить находящимся вблизи него лицам прикасаться к токоведущим частям и, если нужно, выставить охрану.
- Измерение сопротивления изоляции мегаомметром должно осуществляться на отключенных токоведущих частях, с которых снят заряд путем предварительного их заземления. Заземление с токоведущих частей следует снимать только после подключения мегаомметра.
- При измерении мегаомметром сопротивления изоляции токоведущих частей соединительные провода следует присоединять к ним с помощью изолирующих держателей (штанг).
- При работе с мегаомметром прикасаться к токоведущим частям, к которым он присоединен, не разрешается. После окончания работы следует снять с токоведущих частей остаточный заряд путем их кратковременного заземления.
Подготовка к выполнению измерений
При подготовке к измерениям необходимо выполнить ряд технических мероприятий в соответствии с Межотраслевыми правилами по охране труда при эксплуатации электроустановок ПОТ Р М-016-2001, а также требованиями ГОСТ 12.3.019-80 (Система стандартов безопасности труда (ССБТ). Испытания и измерения электрические. Общие требования безопасности). При проведении испытаний руководствоваться требованиями Инструкции по охране труда при измерении сопротивления изоляции.
- Измерения должны проводиться мегаомметрами различного типа и на различное напряжение, в зависимости от требований испытательного напряжения.
- Проверить срок действия госповерки на мегаомметр.
- При выполнении периодических профилактических работ в электроустановках, а так же при выполнении работ на реконструируемых объектах в электроустановках, подготовку рабочего места выполняет персонал предприятия, где выполняется работа.
- Перед началом измерений необходимо изучить электроустановку здания и убедиться в отсутствии напряжения на испытываемом объекте, принять меры препятствующие допуску на испытуемый объект лиц, не участвующих в испытаниях, при необходимости выставить наблюдающего.
- Произвести отключение электроприборов, снять предохранители, отключить аппараты (автоматические выключатели, переключатели), отсоединить электронные схемы и электронные приборы, электрические части электроустановки с пониженной изоляцией или пониженным испытательным напряжением.
- Проверить исправность мегаомметра.
Мегаомметры
В качестве измерительных приборов применяются мегаомметры стрелочные аналогового типа, например М4100, ЭСО202 либо цифровые приборы, в последнее время получившие большое распространение.
Но в независимости от типа, все мегаомметры должны иметь действующие документы об их поверке или аттестации.
Выполнение измерений
Измерения сопротивления изоляции проводятся методом прямого измерения сопротивления между каждой токопроводящей жилой, одной токопроводящей жилой и остальными жилами, соединенными между собой и относительно земли (заземляющей шины).
Для кабелей с металлической оболочкой, экраном или броней — между каждой токопроводящей жилой и остальными жилами, соединенными между собой и оболочкой, экраном, или броней.
Для электроустановок измерения проводят между всеми изолированными частями.
Для того, чтобы исключить влияние поверхностных токов при измерении сопротивления, необходимо использовать трёхпроводный метод измерения.
Сопротивление изоляции, измеренное при испытательном напряжении считается удовлетворительным, если оно соответствует минимально допустимым значениям, которые приведены в таблице. Если результаты замеров показали значения, отличные от данных допустимых значений, необходимо выполнить повторные измерения с отсоединением кабелей, проводов и шнуров от зажимов потребителей и разведением токоведущих жил.
Значение показаний мегаомметра фиксируются по истечении 1 мин. с момента приложения измерительного напряжения, но не более чем через 5 мин, если в стандартах или технических условиях на конкретные кабельные изделия или на другое измеряемое оборудование не предусмотрены другие требования.
Для повторного замера все металлические элементы кабельного изделия должны быть заземлены не менее чем за 2 мин.
При проведении замеров, должны учитываться погрешности, обусловленные погрешностями измерительных приборов и аппаратов, дополнительными емкостями и индуктивными связями между элементами измерительной схемы, воздействием температуры, влиянием внешних электромагнитных и электростатических полей на измерительное устройство, погрешностями метода и т.п
Пример протокола измерения сопротивления изоляции
Источник