- Sdis что это значит
- Смотреть что такое «SDIS» в других словарях:
- HD-TVI, HD-CVI, AHD, SDI, CVBS, IP — сравниваем виды видеонаблюдения
- Цифра или аналог
- Недостатки аналоговых систем по сравнению с цифровыми
- Преимущества аналоговых систем по сравнению с цифровыми
- Нейтральные особенности
- Аналог уже не тот
- Вывод
- Интерфейсы SDI/HD-SDI: проблемы, характеристики, структура
- Зачем нужны цифровые форматы телевидения?
- … и конкретно SDI?
- Какие проблемы стояли на пути создания формата SDI?
- Характеристики формата SDI
- Структура сигнала SDI
- Получение сигнала SDI
- Формат SDTI
Sdis что это значит
Англо-русский словарь технических аббревиатур . 2011 .
Смотреть что такое «SDIS» в других словарях:
SDIS — Service départemental d incendie et de secours En France, le Service départemental d incendie et de secours (ou SDIS) est l établissement public à caractère administratif doté d une assemblée délibérante gérant les sapeurs pompiers au niveau du… … Wikipédia en Français
Sdis — Service départemental d incendie et de secours En France, le Service départemental d incendie et de secours (ou SDIS) est l établissement public à caractère administratif doté d une assemblée délibérante gérant les sapeurs pompiers au niveau du… … Wikipédia en Français
SDIS — Stockholm Diabetes Intervention Study … Medical dictionary
SDIS — Switched Digital Integrated Service … Acronyms
SDIS — Switched Digital Integrated Service … Acronyms von A bis Z
SDIS — Service Départemental d Incendie et de Secours … Sigles et Acronymes francais
SDIS — • Stockholm Diabetes Intervention Study … Dictionary of medical acronyms & abbreviations
SDIS — abbr. Switched Digital Integrated Service … United dictionary of abbreviations and acronyms
təsdis — ə. 1) altıya çatdırma, altı etmə; altıya bölmə; 2) bir şeyi altıkünclü və ya altıdilli etmə; 3) bir qitə şeirin hər bəndinə iki beyt əlavə edib onu altımisralı formaya salma; bu formada yazılmış şeir; müsəddəs altılıq … Klassik Azərbaycan ədəbiyyatında islənən ərəb və fars sözləri lüğəti
Service departemental d’incendie et de secours — Service départemental d incendie et de secours En France, le Service départemental d incendie et de secours (ou SDIS) est l établissement public à caractère administratif doté d une assemblée délibérante gérant les sapeurs pompiers au niveau du… … Wikipédia en Français
Service départemental d’incendie et de secours — En France, le Service départemental d incendie et de secours (ou SDIS) est l établissement public à caractère administratif doté d une assemblée délibérante gérant les sapeurs pompiers au niveau du département. On désigne chaque SDIS en lui… … Wikipédia en Français
Источник
HD-TVI, HD-CVI, AHD, SDI, CVBS, IP — сравниваем виды видеонаблюдения
Выбор видеонаблюдения часто начинают с разрешений, мегапикселей, выбора надежного, недорогого и качественного вендора, если такого найдете, напишите мне.
А фундаментальный вопрос формата видеонаблюдения, часто обсуждается как бы, между прочим, в контексте выбора между устаревшим «аналогом» и современной «цифрой». Причем сама постановка вопроса в данном случае коннотативно подталкивает к выбору IP.
Между тем не все так однозначно, современный аналог совсем нельзя назвать устаревшим, и даже наоборот редкий год обходится без настоящих инноваций.
Как не запутаться в аббревиатурах и сделать правильный выбор, добро пожаловать под кат.
Мы рассмотрим форматы, которые реально применяются в видеонаблюдении сейчас или еще недавно применялись, для полноты картины.
Все форматы для удобства можно представить в виде двух групп:
Цифровые:
- IP (Подробный обзор IP формата)
- HD-SDI (Подробный обзор HD-SDI формата)
Аналоговые:
- CVBS (Подробный обзор CVBS формата)
- HD-CVI (Подробный обзор HD-CVI формата)
- HD-TVI (Подробный обзор HD-TVI формата)
- AHD (Подробный обзор AHD формата)
Так как мы хотим придать этой статье форму практического гайда по выбору формата для видеонаблюдения, то в первую очередь отконстатируем, что пара форматов уже мертвы, и в реальных проектах практически не используются, это CVBS и HD-SDI. Но если очень нужно на яндекс маркете, можно найти и камеры HD-SDI и камеры CVBS. В основном это нераспроданные остатки, наши тоже там когда-то висели, пока мы не решили, что место, которое они занимают на складе, стоит дороже, чем деньги, которые можно за них выручить, и просто раздали их.
Цифра или аналог
После того как мы выбросили из рассмотрения «устаревшие» форматы, у нас остался один цифровой формат IP и три аналоговых HD-CVI, HD-TVI, AHD крайне похожих между собой. И при таком раскладе ответ вроде напрашивается сам собой, но давайте не будем спешить, жизнь, как правило, отличается от маркетинговых призывов к цифровой революции. Далее все преимущества и недостатки я буду указывать применительно к текущему уровню развития только этих трех аналоговых HD-CVI, HD-TVI, AHD форматов.
Недостатки аналоговых систем по сравнению с цифровыми
Аналоговое видеонаблюдение (CVBS) появилось первым, а IP-видеонаблюдение пришло, как возможность избавиться от недостатков аналогового. И надо признать недостатки были.
Шум
Пожалуй, главный проблемой аналоговых систем является шум. Шумом принято называть нежелательный сигнал, который маскирует полезную составляющую сигнала. Полностью избавиться от шума физически невозможно. Ухудшение качества аналогового сигнала становится зрительно заметно с ростом длины кабельной линии, IP-сигнал вы можете передать хоть на Марс в том же качестве, в котором он получен с IP-камеры.
Разрешение изображение
Максимальное разрешение доступное для аналоговых систем 8Мп, IP-камеры легко можно найти и с разрешением 20 Мп и если постараться то и сильно больше. Однако важным нюансом будет то что, для решения большинства задач, разрешения аналоговых камер будет вполне достаточно.
Единая точка отказа
Для аналоговой системы это видеорегистратор, без него аналоговые камеры бесполезны. Аналоговые камеры могут получать изображение с матрицы и отправлять необработанный видеопоток регистратору, и это все.
IP-камера наоборот может обмениваться данными с различными подсистемами, без участия видеорегистратора или центрального сервера. IP-камера по сути это такой себе миникомпьютер, в котором есть даже что-то типа сильно урезанной операционной системы. И она там умеет все: получать изображение с матрицы, отображать его, обрабатывать, упаковывать кодеком, раскладывать на пакеты, отправлять по сетке, даже хранить, если она оснащена картой памяти.
Преимущества аналоговых систем по сравнению с цифровыми
Однако и преимущества у аналоговых систем были и есть.
Отсутствие задержек сигнала
В большинстве случаев незначительное преимущество, но все же для некоторых специализированных систем оно может быть важно. В аналоговых системах отсутствуют задержки изображения, присущие IP-системам. Особенно актуально при работе с PTZ камерами.
Дальность передачи сигнала
На данный момент в аналоговых система дальность передачи видеосигнала из коробки до 1200 метров, космическая цифра по сравнению со 100 метрами для IP систем. И ключевое здесь слово из коробки, то есть купить аналоговую систему с дальностью передачи сигнала на 1200 метров это пара кликов.
IP сигнал тоже можно пульнуть на большее расстояние, чем 100 метров, например с помощью вот такого коммутатора можно на все 250 вместе с PoE. А с помощью активных усилителей можно и подальше. Но это уже некоторое «допиливание», которое усложняет процесс подбора оборудования и приводит к удорожанию и так недешевых IP-систем. Наверное, со временем все эти усилители перейдут в разряд из коробки. Но пока битву за расстояние аналог выигрывает.
Простота монтажа и настройки
Еще одно преимущество аналоговых систем, которое скоро канет в лету, но пока оно есть нельзя его не отметить. Аналоговые системы проще в монтаже, настроек меньше, однако уже появляются технологии, которые превращают IP-системы в так любимый нами Plug and Play. Яркий пример этому технология DirectIP. Это надстройка на базе протокола TCP/IP разработанная компанией IDIS. Которая среди прочих плюшек позволяет упростить первоначальную настройку до уровня аналоговых систем.
Цена
Пожалуй, решающее преимущество, и я бы даже сказал единственная значимая причина, по которой аналоговые системы до сих пор существуют. С приличным IP-видеонаблюдением разница в цене легко может достигать 2-3 раз.
Апгрейд старых аналоговых систем
Современные аналоговые форматы позволяют, используя старую кабельную инфраструктуру (коаксиальных кабель), получать изображение высокого качества — HD, FullHD и даже выше.
Итоговый зачет
Нейтральные особенности
Здесь я собрал отличия, которые принято относить к преимуществам либо аналоговых, либо цифровых систем, но с моей точки зрения это лишь отличительные особенности.
Видеоаналитика
Обычно видеоаналитику, принято относить к преимуществам IP-видеонаблюдения, но это один из тех случаев, которые меняются по ходу развития компаниями возможностей аналоговых форматов.
Да выполнять аналитику на аналоговой камере по-прежнему нельзя, а на IP-камере еще как можно. Но в аналоговых системах видеоаналитика выполняется на видеорегистраторе. И нельзя сказать, что конечный потребитель от этого как то страдает, по правде говоря, я не уверен, что для конечного потребителя вообще важен этот нюанс.
Кибербезопасность
Обычно кибербезопасность принято относить к преимуществам аналогового видеонаблюдения, однако видеорегистратор без которого аналоговая система видеонаблюдения не жизнеспособна, полноценное IP-устройство, подверженное практически всем киберугозам, что и IP-камеры.
Видеосигнал, аудиосигнал, питание, данные
Передача 4 в 1 еще не так давно была преимуществом IP систем, сегодня это уже не так, технология HD-CVI поддерживает передачу всех 4х типов сигналов по одному коаксиальному кабелю.
Политическая конъюнктура
Есть еще пара конъюнктурных моментов, которые вы должны знать. HD-TVI это HikVision, а HD-CVI это Dahua, у обеих компаний куча грехов, и черная метка за нарушения прав человека в Синьцзяне от США. Понятно, что на американском рынке история этих компаний закончена, также понятно, что пошатнуть их доминирование на китайском рынке тоже никто не сможет, особенно это относится к HikVision, так это компания принадлежит правительству Китая.
Но мы на российском рынке и это значит, что с одной стороны HikVision и Dahua сейчас чувствуют себя вольготно, но что будет завтра вопрос открыт.
Аналог уже не тот
Современные аналоговые форматы видеонаблюдения, аналоговые лишь отчасти, Камеры до сих пор аналоговые, и сигнал которые они передают аналоговый, но вот принимает этот сигнал стопроцентно сетевое устройство — видеорегистратор. И видеорегистратор уже без проблем может обмениваться данными с любыми другими сетевыми устройствами.
В первую очередь это ваши смартфоны, удаленный просмотр изображения с системы видеонаблюдения и возможность просмотра видеоархива де факто стало стандартным функционалом в видеонаблюдении.
Цифровая эволюция последних двадцати лет изменила, в том числе и аналоговые системы видеонаблюдения, и современный аналог это уже давно не тот олдскульный CCTV (система телевидения замкнутого контура). Замкнутый контур разорвали цифровые технологии.
Вывод
Если вам нужна система видеонаблюдения, вопрос не в том, использовать цифру или аналог, а в том, когда и в какой степени. Система видеонаблюдения является технически сложной системой, суммарный вес которой больше чем сумма компонентов.
И если вы не хотите чтобы ваша система видеонаблюдения не стала бесполезным сжиганием денег, вам совсем не нужно решать вопрос «цифра или аналог», нужно в первую очередь формулировать цели и задачи которые вы хотите решить, оценить условия, в которых эту задачу придется решать. И под эту задачу найти оптимальное решение, а цифровое оно будет или аналоговое вопрос не самый важный.
Найти оптимальное решение для организации видеонаблюдения, звучит просто, но в жизни это тот еще квест, рынок видеонаблюдения высоко конкурентный (не обманешь — не продашь), лично мы насчитали 7 относительно честных способов отъема денег на рынке видеонаблюдения. Так что главное не «аналог» или «IP» главное чтобы чтобы под видом оборудования вам не продали бесполезный металлолом.
Источник
Интерфейсы SDI/HD-SDI: проблемы, характеристики, структура
Зачем нужны цифровые форматы телевидения?
Как известно, изначально телевидение, как и все прочее, было аналоговым и в основном остается таковым до сих пор. Только сейчас начинается активный переход к цифровому ТВ, практически совпадающий по времени с принятием стандартов и внедрением телевидения высокой четкости.
Цифровые форматы ТВ очень перспективны по многим причинам:
- во-первых, в связи с широким применением компьютеров и программных методов обработки сигнала, нелинейного монтажа и композитинга, что обеспечивает широчайшие возможности, в принципе недостижимые в аналоговом видео, хотя бы уже потому, что процесс не оказывается привязан к реальному времени;
- во-вторых, с переходом на цифру кардинально решается проблема архивирования информации: аналоговые носители громоздки, недолговечны и не обеспечивают оперативного доступа к фрагментам записи;
- в-третьих, аналоговые сигналы подвержены необратимой деградации, степень которой пропорциональна количеству компонентов тракта, и длине передаточных линий. Восстановление изначальной формы аналогового сигнала возможно только ценой возрастания уровня шумов;
- в-четвертых, многие операции, включая интерполяционное масштабирование, актуальность которого растет по мере распространения больших дисплеев, либо в принципе невыполнимы в случае с аналоговым сигналом, либо требуют очень дорогих и громоздких аппаратных средств, а в цифровой сфере реализуются гораздо легче, дешевле и с более высоким качеством.
Однако неоспоримые преимущества цифровой обработки ощутимо теряют свою привлекательность из-за того, что существует необходимость многократной транспортировки сигнала из студии в студию, с одного аппаратного комплекса или компьютера на другой. При этом многочисленные преобразования из аналоговой в цифровую форму и наоборот не менее губительны, чем сложные операции обработки и передача на большие расстояния аналогового сигнала.
Уже давно появились средства цифровой видеозаписи, позволяющие исключить критическую стадию аналого-цифрового преобразования. Весьма логично было бы вслед за этим избавиться и от всех промежуточных преобразований, оставив лишь одно – из цифры в аналог – в самом конце тракта, непосредственно перед передачей в эфир. Аналоговое телевещание пока что превалирует с большим перевесом, хотя постепенный переход на цифровое уже начинается, что позволит наконец полностью избавиться от лишних ЦАП’ови АЦП. Причем не только в студиях и на телецентрах, но и во многих случаях на приемной стороне: ведь такие распространенные на сегодня дисплеи, как плазменные панели и DLP-проекторы, являются цифровыми по своей сути. Несомненно, что и светодиодные дисплеи, которые в будущем наверняка вытеснят плазменные, жидкокристаллические и тем более кинескопные телевизоры, также будут цифровыми. Стопроцентная реализация потенциала цифрового дисплея возможно только при наличии полностью цифрового тракта.
… и конкретно SDI?
Итак, первоочередной целью, поставленной перед студиями, была организация распределительных кабельных сетей для передачи цифрового видео вещательного уровня качества без потерь. Естественно, физическая замена среды распространения – кабельных сетей – была бы связана с высокими капиталовложениями. Поэтому стояла задача адаптировать цифровые потоки под уже имеющиеся коммуникации коаксиального кабеля, которые долгие годы служили для передачи аналогового сигнала. При этом достаточно было частично заменить, а частично дополнить состав аппаратных комплексов, не вмешиваясь в конструктив зданий и помещений (перепрокладка кабелей – это по сути капремонт, а значит, не только деньги, но и время).
Однако просто оцифровать компонентный сигнал, с которым имеют дело в профессиональной сфере, недостаточно. К тому же, поскольку в эфир передается полный телевизионный сигнал, представляющий собой композитный видеосигнал плюс звук в форме частотно-модулированной поднесущей, значительная часть студийных магистралей имела не трех-, а однолинейную структуру. Значит, необходимо было разработать специальный цифровой формат видео, которым и стал SDI – Series Digital Interface, или последовательный цифровой интерфейс, требующий всего одного коаксиального кабеля для передачи трех сигналов – яркости и двух цветоразностных компонент. И обеспечивающий доставку видео без потерь на расстояния, типичные для студий и телецентров.
Какие проблемы стояли на пути создания формата SDI?
Основная проблема – большие массивы данных и соответственно скорости их передачи, неизбежно возникающие при оцифровке и без того достаточно высокочастотного видеосигнала. Спектр цифрового видео имеет очень большую протяженность в области высоких частот: это сотни мегагерц. Широкая полоса тракта необходима не только для обеспечения нужной скорости передачи, но и для сохранения по возможности изначально прямоугольной формы импульсов. При вырождении ее в синусоиду постепенно накапливается джиттер (дрожание фаз фронтов), возрастает количество ошибок, сигнал теряет помехоустойчивость, одно из главных преимуществ цифрового представления сигнала. Джиттер может наблюдаться в широкой полосе частот. Различают низкочастотный джиттер, или НЧ дрейф (drift, wander) ниже 10 Гц, который почти не влияет на качество сигнала (медленное изменение тактовой частоты) и высокочастотный, приводящий к деградации сигнала. Допустимое значение ВЧ-джитера составляет 0,2 х T: 740 пс для 270 Мбит/с (стандартное телевидение), 135 пс для 1,485 Гбит/с (ТВ высокой четкости), где T – длительность тактового импульса.
Рис. 1. Джиттер
На приемной части от джиттера полностью избавляются путем восстановления тактовой частоты данных (перетактирования, reclocking). Однако существуют пределы степени деградации формы сигнала, при превышении которых полное восстановление становится невозможным.
Коаксиальный кабель – практически идеальная среда распространения высокочастотных сигналов (при условии согласованности линии передачи по входам и выходам с компонентами тракта), однако и она накладывает определенные ограничения по частоте, и тем боле жесткие, чем длиннее линия передач. Это касается не только аналоговых, но и цифровых сигналов.
Значит, нужно либо довольствоваться малыми расстояниями, что не всегда возможно, либо сжимать цифровой поток. Алгоритмы эффективного сжатия, основанные на отбрасывании информации малой степени заметности, существуют и широко применяются, и все они предполагают сжатие с потерями: MPEG-2, MPEG-4, DV (Motion JPEG) и пр. Надо сказать, что сжатие (например, MPEG-2 для DVB) используется для вещания в эфир, при этом субъективное восприятие качества картинки при однократной декомпрессии сжатого сигнала на приемной стороне остается достаточно высоким, а в стандартный частотный диапазон одного аналогового канала удается уложить до 3-6 цифровых каналов. Незаменимо оно и для уплотнения информации на внешних носителях (DVD, цифровая магнитная запись, винчестер). Помимо собственно изображения, сжатые форматы позволяют записывать и передавать многоканальный звук, различные дополнительные материалы и пр. Но при многократных циклах сжатия и распаковки сигнала происходит необратимая потеря качества с накоплением характерных артефактов изображения. Поэтому в пределах студии передача сигнала должна осуществляться без сжатия или с неглубоким сжатием без потерь.
Итак, формат SDI позволил решить задачу передачи цифровых видеоданных внутри студий как без цифро-аналоговых и аналого-цифровых преобразований, так и без многократных сжатий и распаковок, максимально сохранив при этом преемственность коммуникаций (как коаксиальных, так и оптоволоконных) и аппаратных комплексов. Многие компоненты, такие, как обычные и матричные коммутаторы, усилители-распределители и пр., применявшиеся в аналоговом ТВ, при условии определенного запаса по полосе частот с успехом работают с сигналами SDI.
Характеристики формата SDI
Формат SDI соответствует Рекомендациям МСЭ-Р ВТ.656 и стандарту SMPTE-259M (Society of Motion Picture and Television Engineers – Общество инженеров в области техники кино и телевидения). Помимо стандартного телевидения, он применим также для телевидения высокой четкости (версия HD-SDI SMPTE-292M). Передача сигнала осуществляется согласно Рекомендации МСЭ-Р ВТ.601 (а также дополнению «В» для формата 16:9). Среда распространения – единичный коаксиальный кабель 75 Ом с терминалами BNC. Либо оптоволоконная линия передач (одномодовое волокно, длина волны 1310±40 нм) с лазерными передатчиком и приемником (Рекомендация МСЭ-Р BT.1367). Оптоволоконная линия терминируется разъемами ST.
- центральный провод (жила)
- изолятор центрального провода
- экранирующий проводник (экран)
- внешний изолятор и защитная оболочка
Рис. 2. Физический интерфейс SDI: коаксиальный кабель, разъем BNC,
оптический разъем, лазерный передатчик
Затухание в линии не должно превышать 30 дБ/100 м на частоте 100 МГц (для стандартного телевидения) и 20 дБ/100м на частоте 750 МГц для ТВЧ. Соответственно примерные расстояния для передачи без ошибок составляют 280 м (СТВ) и 50 м (ТВЧ). С целью увеличения расстояний транспортировки, как и в случае с аналоговым видео, применяются повторители. Наилучшие результаты дают приборы с коррекцией амплитудной характеристики (подъем высоких частот), позволяющие в значительной степени восстановить форму импульсов. Еще лучше, если одновременно с восстановлением формы производится перетактирование сигнала.
Оптоволокно же дает возможность передавать данные без потерь более чем на 50 км.
Рис. 3. Число ошибок в сигнале SDI в зависимости от длины кабеля
(кабель Belden 8281)
Передача является односторонней, без квитирования (подтверждения о получении данных приемной стороной).
Передача каждой из трех компонент видео – Y, Cb, Cr – осуществляется последовательно в виде двоичных кодов. Вещательным стандартом является модель 4:2:2, предполагающая, что на цветоразностные компоненты приходится вдвое меньше отсчетов, чем на яркостную, и соответственно вдвое ниже разрешение по цветам по сравнению с яркостью. Фактически «4:2:2» означает, что из каждой четверки соседних пикселей в строке яркость кодируется для каждого, а цветоразностные компоненты – через один (первая двойка). Кроме этого, точно так же обстоят дела с соответствующими пикселями следующей строки (вторая двойка). Формула 4:4:4 означает равнозначность кодировки для все пикселей и строк (и по яркости, и по цветоразностным компонентам). А формула 4:2:0 означает, что информация о цвете передается не в каждой строке, а через строку.
Модель 4:2:2 хорошо согласуется с особенностями восприятия зрительного аппарата и применяется для того чтобы снизить объем данных. Однако существует возможность работы и с моделью 4:4:4, хотя и при меньших расстояниях передачи (физически реализуемая, хотя и выходит за рамки стандарта SDI). Это необходимо на стадии обработки по цвету, когда для корректного пересчета цифровых последовательностей требуется повышенное разрешение во избежание набега ошибки. Предусмотрена также передача оцифрованного в формате SDI композитного видеосигнала (модель 4:0:0), хотя на практике она применения не находит.
Данные кодируются с частотой выборки 13,5 МГц (яркость) или 6,75 МГц (цветоразностные компоненты). Разрешение составляет 10 бит для каждой компоненты (ранее применялось 8-битное кодирование, ныне устаревшее).
Передача сигнала стандартного телевидения происходит со скоростью потока 270 Мбит/с, для чего достаточно полосы канала в 250 МГц. В соответствии со спецификацией LVDS (Low Voltage Differential Signaling, или дифференциальная передача низкоуровневых сигналов) биты кодируются не напряжением, а перепадами уровней напряжения (размах его составляет 800±80 мВ). Это обеспечивает высокую помехозащищенность (по аналогии частотная модуляция аналогового сигнала меньше подвержена воздействию помех по сравнению с амплитудной). Поскольку важны не сами уровни, а только перепады, полярность сигнала значения не имеет, и поэтому в тракте с одинаковым успехом могут применяться как неинвертирующие, так и инвертирующие усилительные элементы.
Исходный цифровой поток скремблируется («перемешивается), на приемной же стороне производится его восстановление (дескремблирование). Эта операция применяется для более равномерного распределения энергии сигнала по всему его спектру, который приближается в результате к шумовому и создает меньше вредных наводок на соседние коммуникации.
Помимо собственно видео, в формате SDI возможна передача звука (стандартные 4 канала или больше) и временного кода.
Структура сигнала SDI
Для стандартного телевидения различают форматы SDI, соответствующие стандартам NTSC (60 полей/с, 525 строк в кадре) и PAL/SECAM (50/625).
Каждая строка в начале и конце имеет специальные маркеры, или метки SAV (Start of Active Video) и EAV (End of Active Video). Между метками SAV и EAV передаются собственно видеоданные (720 отсчетов сигнала яркости Y и по 360 отсчетов цветоразностных каналов Cr, Cb). Между окончанием предыдущей (EAV) и началом следующей строки (SAV) могут передаваться дополнительные данные, сюда же вставляются отсчеты каналов звукового сопровождения.
Рис. 4. Структура сигнала SDI
Рис. 5. Структура кадра SDI
Для ТВЧ структура сигнала SDI (в данном случае – HD SDI) остается прежней, изменяются только количество отсчетов в каждой строке и число строк в кадрах. Согласно стандарту SMPTE-292M передача ТВЧ осуществляется на скорости 1,485 Гбит/с при частоте кадров 24, 25, 30 Гц (прогрессивная развертка) или 50, 60 Гц (чересстрочная развертка). Существуют также версии формата HD SDI с частотами кадровой развертки 59,94, 29,97 и 23,976 Гц и скоростью потока 1,4835 Гбит/с, обеспечивающие совместимость различными вариантами NTSC.
Получение сигнала SDI
Если SDI получается из аналоговых композитного сигнала или S-Video, сначала эти сигналы декодируются и раскладываются на составляющие: яркость Y, а также цветоразностные сигналы U (или Cr) и V (или Cb). Уровни этих сигналов определяются следующими соотношениями:
Y = 0,299R+0,578G+0,114B; U = R-Y; V = B-Y, R – красный, G – зеленый, B – синий.
Затем каждая компонента оцифровывается и подается на кодер, в котором данные собираются в последовательности, соответствующей структуре SDI. Звук включается в структуру SDI (в промежутках между метками EAV и SAV) с помощью специальных устройств – эмбеддеров, на приемной же стороны он вновь извлекается из сигнала с помощью деэмбеддеров. Звуковое сопровождение может подаваться на вход эмбеддера в цифровом виде (по интерфейсу S/PDIF) либо в аналоговом.
Стандарт SMPTE-272M предусматривает возможность внедрения до 16 каналов цифрового звука с различными частотами дискретизации, разрядностями и способами синхронизации (всего 10 вариантов).
В SDI возможно ввести и другие данные, например телетекст. Это не предусмотрено стандартом, но физически реализуемо и часто применяется на практике.
Формат SDTI
Часто возникает потребность передачи сжатого оцифрованного видеосигнала. Для этого вполне можно использовать SDI, но снова возникает проблема лишних преобразований: декомпрессии (перед передачей) и повторного сжатия. Поэтому на базе SDI был создан специальный формат передачи сжатых данных – SDTI (Serial Digital Transport Interface), стандарт SMPTE-305M. Синоним SDTI – QSDI, принятый у разработчиков аппаратуры DVCAM. SDTI обеспечивает передачу сигнала быстрее, чем в реальном времени – несжатый сигнал передается со скоростью до 360 Мбит/с, а сжатый до 200 Мбит/ с, то есть в 4 раза быстрее, чем сжатый компонентный 4:2:2 (50 Мбит/с). Передача происходит быстрее реального времени. Стандарт предусматривает 8 каналов аудио, тайм-код и пр. В качестве среды распространения используется такой же коаксиальный кабель, как и в SDI, а также оптоволоконные линии. Первая версия формата – SDT – сочетала в себе основные особенности интерфейсов DVCAM и Betacam SX (Sony) и DVCPRO (Panasonic). SDTI обладает односторонней совместимостью с SDI (компоненты стандарта SMPTE-305M корректно работают с SMPTE-259M), что обеспечивает преемственность оборудования и дает возможность плавного перехода с одного формата на другой без глобальной замены.
Структура сигнала SDTI в целом та же, что и у SDI, но данные в области активного видео пакетируются. Между метками EAV и SAV (т.е. в служебной области) в каждой строке присутствуют специальные коды, оповещающие приемную сторону о том, что данная строка содержит информацию в формате SDTI.
Источник