Nsr что это значит

Nsr что это значит

Большой англо-русский и русско-английский словарь . 2001 .

Смотреть что такое «NSR» в других словарях:

NSR — can refer to several different things: Honda NSR motorcycles Normal Sinus Rhythm, the normal regular rhythm of the heart Naval Service Reserve Non Ship Reason, business operations term Nova Scotia Railway Airbus NSR Northampton Steam Railway… … Wikipedia

NSR-10 — La Norma Sismoresistente 2010 (NSR 10) es una norma técnica colombiana encargada de reglamentar las condiciones con las que deben contar las construcciones con el fin de que la respuesta estructural a un sismo sea favorable. Fue promulgada por el … Wikipedia Español

NSR — New Source Review (Community » Media) ** Nitride Semiconductor Research (Academic & Science » Electronics) ** Nitride Semiconductor Research (Academic & Science » Chemistry) * Normal Sinus Rhythm (Medical » Veterinary) * Nvidia Shading Rasterizer … Abbreviations dictionary

NSR P — Norfolk Southern Railway Company of Virginia Preferred (Business » NYSE Symbols) … Abbreviations dictionary

NSR — nasal septal reconstruction; nonspecific reaction; normal sinus rhythm; no sign of recurrence; not seen regularly * * * normal sinus rhythm … Medical dictionary

Читайте также:  Офлайн фестиваль что значит

NSR/M — no sign of recurrence or metastases … Medical dictionary

NSR — • Network Status Report • Nominal Slow Rate NASA … Acronyms

nsr — ISO 639 3 Code of Language ISO 639 2/B Code : ISO 639 2/T Code : ISO 639 1 Code : Scope : Individual Language Type : Living Language Name : Maritime Sign Language … Names of Languages ISO 639-3

NSR — abr. Nueva Sociedad Rural … Diccionario de Abreviaturas de la Lengua Española

NSR — [1] Network Status Report [2] Nominal Slow Rate ( > NASA Acronym List ) … Acronyms von A bis Z

NSR — NISN Service Request Contributor: GSFC … NASA Acronyms

Источник

Nsr что это значит

Универсальный англо-русский словарь . Академик.ру . 2011 .

Полезное

Смотреть что такое «NSR» в других словарях:

NSR — can refer to several different things: Honda NSR motorcycles Normal Sinus Rhythm, the normal regular rhythm of the heart Naval Service Reserve Non Ship Reason, business operations term Nova Scotia Railway Airbus NSR Northampton Steam Railway… … Wikipedia

NSR-10 — La Norma Sismoresistente 2010 (NSR 10) es una norma técnica colombiana encargada de reglamentar las condiciones con las que deben contar las construcciones con el fin de que la respuesta estructural a un sismo sea favorable. Fue promulgada por el … Wikipedia Español

NSR — New Source Review (Community » Media) ** Nitride Semiconductor Research (Academic & Science » Electronics) ** Nitride Semiconductor Research (Academic & Science » Chemistry) * Normal Sinus Rhythm (Medical » Veterinary) * Nvidia Shading Rasterizer … Abbreviations dictionary

NSR P — Norfolk Southern Railway Company of Virginia Preferred (Business » NYSE Symbols) … Abbreviations dictionary

NSR — nasal septal reconstruction; nonspecific reaction; normal sinus rhythm; no sign of recurrence; not seen regularly * * * normal sinus rhythm … Medical dictionary

NSR/M — no sign of recurrence or metastases … Medical dictionary

NSR — • Network Status Report • Nominal Slow Rate NASA … Acronyms

nsr — ISO 639 3 Code of Language ISO 639 2/B Code : ISO 639 2/T Code : ISO 639 1 Code : Scope : Individual Language Type : Living Language Name : Maritime Sign Language … Names of Languages ISO 639-3

NSR — abr. Nueva Sociedad Rural … Diccionario de Abreviaturas de la Lengua Española

NSR — [1] Network Status Report [2] Nominal Slow Rate ( > NASA Acronym List ) … Acronyms von A bis Z

NSR — NISN Service Request Contributor: GSFC … NASA Acronyms

Источник

Nsr что это значит

Англо-русский словарь технических аббревиатур . 2011 .

Смотреть что такое «NSR» в других словарях:

NSR — can refer to several different things: Honda NSR motorcycles Normal Sinus Rhythm, the normal regular rhythm of the heart Naval Service Reserve Non Ship Reason, business operations term Nova Scotia Railway Airbus NSR Northampton Steam Railway… … Wikipedia

NSR-10 — La Norma Sismoresistente 2010 (NSR 10) es una norma técnica colombiana encargada de reglamentar las condiciones con las que deben contar las construcciones con el fin de que la respuesta estructural a un sismo sea favorable. Fue promulgada por el … Wikipedia Español

NSR — New Source Review (Community » Media) ** Nitride Semiconductor Research (Academic & Science » Electronics) ** Nitride Semiconductor Research (Academic & Science » Chemistry) * Normal Sinus Rhythm (Medical » Veterinary) * Nvidia Shading Rasterizer … Abbreviations dictionary

NSR P — Norfolk Southern Railway Company of Virginia Preferred (Business » NYSE Symbols) … Abbreviations dictionary

NSR — nasal septal reconstruction; nonspecific reaction; normal sinus rhythm; no sign of recurrence; not seen regularly * * * normal sinus rhythm … Medical dictionary

NSR/M — no sign of recurrence or metastases … Medical dictionary

NSR — • Network Status Report • Nominal Slow Rate NASA … Acronyms

nsr — ISO 639 3 Code of Language ISO 639 2/B Code : ISO 639 2/T Code : ISO 639 1 Code : Scope : Individual Language Type : Living Language Name : Maritime Sign Language … Names of Languages ISO 639-3

NSR — abr. Nueva Sociedad Rural … Diccionario de Abreviaturas de la Lengua Española

NSR — [1] Network Status Report [2] Nominal Slow Rate ( > NASA Acronym List ) … Acronyms von A bis Z

NSR — NISN Service Request Contributor: GSFC … NASA Acronyms

Источник

Nsr что это значит

Дисперсионный анализ основан на работах знаменитого математика Р.А.Фишера (30-е годы 20 в.). Несмотря на достаточно солидный &#171возраст&#187, данный метод до сих пор остается одним из основных при проведении биологических и сельскохозяйственных исследований. Идеи, положенные в основу дисперсионного анализа, широко используются во многих других методах математического анализа экспериментальных данных, а также при планировании биологических и сельскохозяйственных экспериментов.

Дисперсионный анализ позволяет:

1) сравнивать две или несколько выборочных средних;

2) одновременно изучать действие нескольких независимых факторов, при этом можно определить как эффект каждого фактора в изменчивости изучаемого признака, так и их взаимодействие;

3) правильно планировать научный эксперимент.

Изменчивость живых организмов проявляется в виде разброса или рассеяния значений отдельных признаков в пределах, которые определяются степенью биологической выравненности материала и характером взаимосвязей с условиями среды. Признаки, изменяющиеся под воздействием тех или иных причин, называют результативными.

Факторы, влияющие на степень варьирования результативного признака, делятся на:

Регулируемые (систематические) факторы вызываются действием изучаемого в эксперименте фактора, который имеет в опыте несколько градаций. Градация фактора — это степень его воздействия на результативный признак. В соответствии с градациями признака выделяется несколько вариантов опыта для сравнения. Поскольку эти факторы предварительно обусловлены, их называют регулируемыми в исследованиях, т.е. заданными, зависящими от организации опыта. Следовательно, регулируемые факторы – факторы, действие которых изучается в опыте, именно они и обусловливают различия между средними выборочными разных вариантов — межгрупповую (факториальную) дисперсию.

Случайные факторы определяются естественным варьированием всех признаков биологических объектов в природе. Это неконтролируемые в опыте факторы. Они оказывают случайное влияние на результативный признак, обусловливают экспериментальные ошибки и определяют внутри каждого варианта разброс (рассеяние) признака. Этот разброс носит название внутригрупповой (случайной) дисперсии.

Таким образом, относительная роль отдельных факторов в общей изменчивости результативного признака характеризуется дисперсией и может быть изучена с помощью дисперсионного анализа или анализа рассеяния

Дисперсионный анализ основан на сравнении межгрупповой и внутригрупповой дисперсий. Если межгрупповая дисперсия не превышает внутригрупповую, значит, различия между группами имеют случайный характер. Если межгрупповая дисперсия существенно выше, чем внутригрупповая, то между изучаемыми группами (вариантами) существуют статистически значимые различия, обусловленные действием изучаемого в опыте фактора.

Из этого следует, что при статистическом изучении результативного признака при помощи дисперсионного анализа следует определить его варьирование по вариантам, повторениям, остаточное варьирование внутри этих групп и общее варьирование результативного признака в опыте. В соответствии с этим различают три вида дисперсий:

1) Общую дисперсию результативного признака (Sy 2 );

2) Межгрупповую, или частную, между выборками (Sy 2 );

3) Внутригрупповую, остаточную (Sz 2 ).

Следовательно, дисперсионный анализ &#150 это расчленение общей суммы квадратов отклонений и общего числа степеней свободы на части или компоненты, соответствующие структуре эксперимента, и оценка значимости действия и взаимодействия изучаемых факторов по F-критерию. В зависимости от числа одновременно исследуемых факторов различают двух-, трех-, четырехфакторный дисперсионный анализ.

При обработке полевых однофакторных статистических комплексов, состоящих из нескольких независимых вариантов, общая изменчивость результативного признака, измеряемая общей суммой квадратов (Сy), расчленяется на три компонента: варьирование между вариантами (выборками) — СV, варьирование повторений (варианты связаны между собой общим контролируемым условием – наличием организованных повторений) — Сp и варьирование внутри вариантов Сz.. В общей форме изменчивость признака представлена следующим выражением:

Сy = СVp + Сz.

Общее число степеней свободы (N -1) также расчленяется на три части:

степени свободы для вариантов (l – 1);

степени свободы для повторений (n – 1);

случайного варьирования (n – 1)&#215(l – 1).

Суммы квадратов отклонений, по данным полевого опыта – статистического комплекса с вариантами – l и повторениями – n, находят следующим образом. Сначала с помощью исходной таблицы определяют суммы по повторениям — &#931 P , вариантам — &#931 V и общую сумму всех наблюдений — &#931 X.

Затем вычисляют следующие показатели:

Общее число наблюдений N = l &#215 n;

Сумму квадратов для вариантов CV = &#931 V 2 / (n – 1);

Сумму квадратов для ошибки (остаток) CZ = Cy — Cp — CV .

Полученные суммы квадратов CV и CZ делят на соответствующие им степени свободы и получают два средних квадрата (дисперсии):

Оценка существенности разностей между средними

Полученные средние квадраты используют в дисперсионном анализе для оценки значимости действия изучаемых факторов путем сравнения дисперсии вариантов (Sv 2 ) с дисперсией ошибки (SZ 2 ) по критерию Фишера (F = SY 2 / SZ 2 ). За единицу сравнения принимают средний квадрат случайной дисперсии, который определяет случайную ошибку эксперимента.

Применение критерия Фишера позволяет установить наличие или отсутствие существенных различий между выборочными средними, но не указывает конкретных различий между средними.

Проверяемой Ho — гипотезой является предположение — все выборочные средние являются оценками одной генеральной средней и различия между ними несущественны. Если Fфакт = SY 2 / SZ 2 &#8804 Fтеор , то нулевая гипотеза не отвергается. Между выборочными средними нет существенных различий, и на этом проверка заканчивается. Нулевая гипотеза отвергается при Fфакт = SY 2 / SZ 2 &#8805 Fтеор Значение F- критерия для принятого в исследовании уровня значимости находят в соответствующей таблице с учетом степеней свободы для дисперсии вариантов и случайной дисперсии. Обычно пользуются 5% -ным уровнем значимости, а при более строгом подходе 1% — ным и даже 0,1% -ным.

2. Оценка значимости разности между средними по наименьшей существенной разности

Наименьшей существенной разностью (НСР) &#150 является своеобразной ценой деления, разрешающей способностью опыта при оценке разности выборочных средних. Критерий НСР = t0,5 * Sd указывает предельную ошибку для разности двух выборочных средних.

Если фактическая разность больше НСР0,5 (d &#8805 НСР0,5), то она значима, существенна, при d &#8804 НСР0,5 – несущественна.

Для определения НСР необходимо по данным дисперсионного анализа вычислить обобщенную ошибку средней: Sx = &#8730 S 2 / n и ошибку разности средних Sd = &#8730 2S 2 / n. Значения t — критерия для принятого уровня значимости и числа степеней свободы остаточной дисперсии берут из таблицы.

В многофакторном опыте изучается действие и взаимодействие нескольких факторов на изменчивость результативного признака, поэтому каждому фактору задают несколько градаций. Это позволяет изучать действие каждого из них при нескольких градациях других факторов.

Эффект взаимодействия факторов составляет ту часть общей изменчивости, которая вызвана различным действием одного фактора при разных градациях другого. В полевом опыте часто эффект от совместного применения изучаемых факторов может быть выше (синергизм) или ниже (антагонизм) суммы эффектов от раздельного применения каждого из них. В первом случае имеет место положительное, во втором – отрицательное взаимодействие факторов. Если же факторы не взаимодействуют, то эффект от совместного применения равен сумме эффектов от раздельного их применения (аддитивизм).

При дисперсионном анализе данных многофакторного опыта используют те же принципы и расчеты дисперсий, что и при однофакторном. Однако при этом усложняется математическая модель анализа.

При обработке данных двухфакторного опыта сумма квадратов расчленяется на следующие компоненты:

Соответственно с указанными компонентами расчленяется и общее число степеней свободы:

Вегетационные опыты представляют собой статистические комплексы, состоящие из нескольких независимых выборок (вариантов). Независимость сопоставляемых вариантов достигается регулярным перемещением сосудов на вагонетке. Следовательно, в вегетационных опытах обычно нет территориально организованных повторений. Поэтому в однофакторном вегетационном опыте общее варьирование результативного признака разлагается на два компонента – варьирование вариантов и случайное варьирование и общее число степеней свободы:

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ ПРАКТИЧЕСКОГО ЗАДАНИЯ

ЗАНЯТИЕ 6

ОБРАБОТКА ДАННЫХ ОДНФАКТОРНЫХ ПОЛЕВЫХ ОПЫТОВ

Задача – провести дисперсионный анализ данных однофакторного полевого опыта по индивидуальному заданию согласно следующих рекомендаций:

1. Исходные цифровые данные задачи занести в таблицу 1 и определить:

1) Сумму наблюдений по вариантам — &#931 V

2) Сумму по повторениям — &#931 P

Обратите внимание – суммы значений по вариантам и по повторениям должны быть равны — &#931 x

3) Рассчитать средние значения в каждом из вариантов – x

4) Рассчитать общее число наблюдений в опыте – N

N = число вариантов (l) &#215 число повторностей (п)

5) Рассчитать общую среднюю по опыту – x0

x0 = &#931 x / N

*Фактические значения данных опыта – x1, x2, xn

2) Установить произвольное среднее число (начало) – А

Для этого следует вычисленное x0 округлить до целого значения.

3) Преобразовать исходные данные из таблицы 1 , в таблицу 2 согласно формуле:

xа – преобразованное число

xn – исходные значения в табл. 1

A – произвольное среднее число

Таблица 2 – Отклонения от произвольной средней величины – А

4) Полученные преобразованные значения (отклонения от произвольной средней) возводим в квадрат и подсчитываем сумму квадратов отклонений по вариантам и по повторениям (табл. 3):

Таблица 3 – Квадраты преобразованных значений

5) Затем вычисляют суммы квадратов отклонений в следующей последовательности:

Корректирующий фактор (поправку) Скор = (&#931 xа)2 / N;

Общую сумму квадратов Cy = &#931 (xа2) – Cкор;

Сумму квадратов для повторений Cp = &#931 P2 / (l –Cкор);

Сумму квадратов для вариантов CV = &#931 V2 / (n – 1);

Сумму квадратов для ошибки (остаток) CZ = Cy – Cp – CV .

6) После вычисления сумм квадратов отклонений, заполняется таблица результатов дисперсионного анализа (табл. 4)

Таблица 4 – Результаты однофакторного дисперсионного анализа

Вариантов: Sv2 = CV / l – 1;

Остаточное: SZ2 = CZ / (n – 1)?(l – 1)

*Теоретическое значение F05 находят по таблице (см.прил. ), исходя из числа степеней свободы для дисперсий вариантов (числитель) и числа степеней свободы для дисперсии остатка (знаменатель).

Если Fфакт. &#8805 F05(табл.) в опыте есть существенные различия по вариантам, тогда необходимо определить между какими вариантами наблюдаются существенные отличия (оценка существенности частных различий по НСР).

7) Для оценки существенности частных различий вычисляются следующие величины:

— обобщенную ошибку средней: Sx = &#8730 S2 / n

— ошибку разности средних: Sd = &#8730 2S2 / n

Критерий НСР = t0,5*Sd указывает предельную ошибку для разности двух выборочных средних. Если фактическая разность больше НСР0,5 (d &#8805 НСР0,5), то она значима, существенна, при d &#8804 НСР0,5 – несущественна.

Значения t – критерия для принятого уровня значимости и числа степеней свободы остаточной дисперсии берут из таблицы (см.прил.1).

Полученные результаты статистической обработки заносятся в итоговую табл. 5:

Таблица 5 – Итоговая таблица дисперсионного анализа

8) На основании полученных данных однофакторного полевого опыта сделать письменные выводы об эффективности того или иного применяемого в опыте агротехнического приема (градации фактора).

Задания для обработки данных однофакторного полевого опыта методом дисперсионного анализа:

1. Обработать методом дисперсионного анализа данные полевого опыта по изучению эффективности нормы высева (млн. всхожих зерен/га) на урожайность (ц/га) озимой ржи (почва – дерново-подзолистая):

&#8470 Варианты повторения
1 2 3 4
1 4 млн. 21,3 23,4 23,5 22,0
2 5 млн. 25,5 24,4 24,0 26,3
3 6 млн. 18,9 19,6 20,5 19,9

2. Обработать методом дисперсионного анализа данные полевого опыта по изучению эффективности сроков посева на урожайность (ц/га) яровой пшеницы (почва – чернозем обыкновенный):

&#8470 Варианты повторения
1 2 3 4
1 15-20 мая 17,4 15,9 16,5 22,0
2 20-25 мая 21,0 20,4 19,5 26,3
3 25-30 мая 20,4 19,5 18,0 19,9

3. Обработать методом дисперсионного анализа данные полевого опыта по изучению эффективности доз азотного удобрения на урожайность (ц/га) ячменя (почва – серая лесная):

&#8470 Варианты повторения
1 2 3 4
1 N30 17,9 15,5 15,9 19,1
2 N50 19,3 18,7 19,1 19,0
3 N70 21,3 20,5 21,0 21,7
4 N90 25,4 27,1 26,4 26,5

4. Обработать методом дисперсионного анализа данные полевого опыта по изучению эффективности полного минерального удобрения на урожайность (ц/га) картофеля (почва – чернозем выщелоченный):

&#8470 Варианты повторения
1 2 3 4
1 N30P30K60 170 184 180 194
2 N50P60K90 238 214 219 226
3 N70P90K120 205 209 197 189

5. Обработать методом дисперсионного анализа данные полевого опыта по изучению эффективности сортов на урожайность (ц/га) овса (почва – чернозем обыкновенный):

&#8470 Варианты повторения
1 2 3 4
1 Сельма 25,6 24,4 24,5 28,1
2 Таежник 26,9 27,1 25,4 25,9
3 Саян 34,5 30,9 32,4 31,7

6. Обработать методом дисперсионного анализа данные полевого опыта по изучению эффективности ширины междурядий на урожайность зеленой массы кукурузы (ц/га) (почва – светло-серая лесная):

&#8470 Варианты повторения
1 2 3 4
1 45см 425 411 397 408
2 90см 560 587 544 559
3 120см 490 484 471 482

7. Обработать методом дисперсионного анализа данные полевого опыта по изучению сроков внесения азотного удобрения под озимую рожь на урожайность (ц/га) картофеля (почва – серая лесная):

&#8470 Варианты повторения
1 2 3 4
1 до посева 17,1 17,8 17,4 18,0
2 в подкормку весной 24,3 27,4 25,0 27,0
3 в фазу выхода в трубку 20,1 19,3 20,9 21,6

8. Обработать методом дисперсионного анализа данные полевого опыта по изучению эффективности глубины основной обработки на урожайность (ц/га) яровой пшеницы (почва – чернозем выщелоченный):

&#8470 Варианты повторения
1 2 3 4
1 20-22 см 28,4 29,7 25,6 26,3
2 25-27 см 24,4 21,9 25,7 22,1
3 30-32 см 18,7 19,4 17,1 17,7

9. Обработать методом дисперсионного анализа данные полевого опыта по изучению эффективности доз органических удобрений на урожайность (ц/га) капусты (почва – темно-каштановая):

&#8470 Варианты повторения
1 2 3 4
1 20 т/га 311 340 338 325
2 40 т/га 347 338 356 340
3 60 т/га 380 377 365 388
4 80 т/га 450 468 470 458

10. Обработать методом дисперсионного анализа данные полевого опыта по изучению эффективности способа обработки почвы на урожайность (ц/га) яровой пшеницы (почва – чернозем обыкновенный):

&#8470 Варианты повторения
1 2 3 4
1 20-22см 14,7 13,2 17,4 17,1
2 30-32см 11,9 12,5 12,7 12,4
3 20-22см 20,3 17,4 19,3 19,7
4 30-32см 16,2 16,0 15,9 16,9

11. Обработать методом дисперсионного анализа данные полевого опыта по изучению эффективности предшественников на урожайность (ц/га) яровой пшеницы (почва – темно-каштановая):

&#8470 Варианты повторения
1 2 3 4
1 чистый пар 19,3 19,9 18,8 19,7
2 пар кулисный 23,7 22,1 22,5 23,5
3 донник 2 год использов. 15,6 15,8 14,3 14,7

12. Обработать методом дисперсионного анализа данные полевого опыта по изучению эффективности доз полного минерального удобрения на содержание белка (%) в зерне ячменя (почва – чернозем выщелоченный):

&#8470 Варианты повторения
1 2 3 4
1 N30P60K40 15,9 12,6 12,7 13,0
2 N45P75K55 13,8 13,4 13,6 12,9
3 N60P90K70 15,8 14,9 15,7 15,9

13. Обработать методом дисперсионного анализа данные полевого опыта по изучению эффективности видов органических удобрений на урожайность кукурузы (ц/га) (почва – темно-серая лесная):

&#8470 Варианты повторения
1 2 3 4
1 навоз 55,7 57,8 53,0 55,9
2 сидерат 48,4 49,3 45,9 49,0
3 торфокомпост 52,4 50,9 51,2 51,5

14. Обработать методом дисперсионного анализа данные полевого опыта по изучению эффективности гербицидов на урожайность (ц/га) яровой пшеницы (почва – чернозем обыкновенный):

&#8470 Варианты повторения
1 2 3 4
1 Ковбой 29,3 27,3 28,2 26,4
2 ПумаСупер 30,2 29,4 29,7 28,1
3 Логран 34,4 33,3 35,2 33,0

15. Обработать методом дисперсионного анализа данные полевого опыта по изучению эффективности предшественников на урожайность озимой ржи (ц/га) (почва – дерново-подзолистая):

&#8470 Варианты повторения
1 2 3 4
1 клевер 19,6 20,8 19,2 19,4
2 горох+овес 17,8 18,4 18,1 16,3
3 рапс 23,3 25,6 23,3 23,7

16. Обработать методом дисперсионного анализа данные полевого опыта по изучению эффективности числа предпосевных культиваций на урожайность (ц/га) яровой пшеницы (почва – чернозем обыкновенный):

&#8470 Варианты повторения
1 2 3 4
1 1 20,4 17,3 17,9 19,5
2 2 21,0 20,5 20,3 19,8
3 3 22,9 23,4 23,1 23,9

17. Обработать методом дисперсионного анализа данные полевого опыта по изучению эффективности способа обработки почвы на запасы продуктивной влаги (мм) в слое 0-20 см (почва – чернозем обыкновенный):

&#8470 Варианты повторения
1 2 3 4
1 отвальная 18,7 19,4 19,0 19,9
2 плоскорезная 24,3 24,3 26,7 22,6
3 нулевая 20,1 20,7 21,3 20,8

18. Обработать методом дисперсионного анализа данные полевого опыта по изучению эффективности дозы азотного удобрения на фоне фосфорно-калийных удобрений на урожайность (ц/га) яровой пшеницы (почва – чернозем выщелоченный):

&#8470 Варианты повторения
1 2 3 4
1 N60P60K60 14,4 15,6 13,2 13,9
2 N90P60K60 17,3 16,4 16,2 16,9
3 N120P60K60 24,3 25,8 25,7 22,0

19. Обработать методом дисперсионного анализа данные полевого опыта по изучению эффективности доз азотно-калийных удобрений на урожайность зеленой массы (ц/га) кукурузы (почва – серая лесная):

&#8470 Варианты повторения
1 2 3 4
1 N45K60 311 298 304 319
2 N60K75 380 371 377 394
3 N75K90 411 431 438 449

20. Обработать методом дисперсионного анализа данные полевого опыта по изучению эффективности доз извести на уровень каталитической активности (см3/1г) дерново-подзолистой почвы:

&#8470 Варианты повторения
1 2 3 4
1 1 т/га 3,1 2,8 3,0 3,1
2 2 т/га 4,9 4,7 4,9 4,9
3 3 т/га 5,1 5,0 5,0 4,9

21. Обработать методом дисперсионного анализа данные полевого опыта по изучению эффективности доз органических удобрений на скорость продуцирования углекислого газа дерново-подзолистой почвы (г/м2 * сутки):

&#8470 Варианты повторения
1 2 3 4
1 10 т/га 4,3 3,9 3,7 3,7
2 20 т/га 5,6 5,9 6,7 6,1
3 30 т/га 7,9 7,7 8,4 7,9

22. Обработать методом дисперсионного анализа данные полевого опыта по изучению эффективности сроков посева на урожайность (ц/га) овса (почва — темно-серая лесная):

&#8470 Варианты повторения
1 2 3 4
1 15-20 мая 19,6 17,1 17,8 17,9
2 20-25 мая 20,0 21,3 21,4 21,5
3 25-30 мая 24,3 25,7 25,5 26,8

23. Обработать методом дисперсионного анализа данные полевого опыта по изучению эффективности сроков мульчирования сидеральной массой почвы участка на запасы продуктивной влаги (мм) в слое почвы 0-20 см:

&#8470 Варианты повторения
1 2 3 4
1 15 июля 45,0 51,0 47,0 49,0
2 15 августа 41,0 44,0 43,0 47,0
3 15 сентября 31,0 30,0 35,0 36,0

24. Обработать методом дисперсионного анализа данные полевого опыта по изучению эффективности нормы высева ярового рапса на содержание переваримого протеина (%) в зеленой массе рапса:

&#8470 Варианты повторения
1 2 3 4
1 2,5 млн. 16,7 17,0 17,1 16,8
2 3,5 млн. 17,1 17,6 17,9 17,1
3 4,5 млн. 14,9 14,7 14,8 14,9

25. Обработать методом дисперсионного анализа данные полевого опыта по изучению эффективности сроков заделки ярового рапса на содержание подвижного органического вещества в дерново-подзолистой почве (С мг/100г):

&#8470 Варианты повторения
1 2 3 4
1 15 июля 31,4 30,7 32,3 33,4
2 15 августа 31,9 33,7 30,4 32,9
3 15 сентября 47,8 45,3 46,7 47,7

© ФГОУ ВПО Красноярский государственный аграрный университет

Источник

Оцените статью