Нагрузка а11 что это значит

Временные нагрузки от подвижного состава и пешеходов

Нормативные постоянные нагрузки определяются из геометрических размеров элементов пролетных строений (прогонов, связей, конструкции проезжей части, тротуаров, ограждений и т.п.).

Постоянная нагрузка распределяется равномерно между всеми главными балками (прогонами) пролетного строения. Согласно СП 35. 13330.2011 «Мосты и трубы» деревянные мосты проектируют и рассчитывают на временные нагрузки А11 и НК-80.

Нормативная временная нагрузка А11 представляет собой (рис. 1.1) равномерно распределенную нагрузку в виде полосы, интенсивностью 10,8 кН/м(1,1 т/м), и двухосную тележку с давлением на ось 110 кН (11 т).

Временная нагрузка А11:Р = 110 кН (11 т) – давление на ось тележки; ν = 11,1 кН/м (1,1 т/м) –интенсивность равномерно-распределенной нагрузки.

Одиночная тяжелая нормативная нагрузка НК-80 представлена в виде четырехосной тележки общим весом 785 кН (80 т) с давлением на каждую ось по 196 кН (20 т).

Рис. 1.2. Временная нагрузка А11:

Р = 110 кН (11 т) – давление на ось тележки;

ν = 11,0 кН/м (1,1 т/м) –интенсивность равномерно-распределенной нагрузки.

Рис.1.3. Временная нагрузка НК-80:

Р = 196 кН (20 т) – давление на ось тележки.

Проектирование мостового перехода

Проектирование схемы моста

Выбор схемы моста (разбивка моста на пролеты) является одной из сложных и ответственных задач инженерного проектирования сооружения. Схема моста влияет на его технико-экономические показатели, надежность и долговечность сооружения (пропуск ледохода и паводковых вод, условия эксплуатации и содержания), технологию строительства сооружения. Часто схема моста определяется экономическими, производственными, архитектурными или гидрологическими условиями. При проектировании схемы моста предлагается учесть следующие рекомендации.

При разбивке на пролеты следует иметь в виду, что наиболее рациональной по стоимости является такая схема моста, в которой большие пролеты располагаются в самых глубоких местах реки, а пойменные участки перекрываются меньшими пролетами. Это связано с тем, что стоимость опор в русле выше стоимости опор на поймах. Поэтому наименьшая стоимость балочного моста достигается при равенстве стоимостей пролетного строения (без проезжей части) и опоры.

Не следует располагать опоры моста в самом глубоком месте реки (фарватере), т.к. такая опора будет подвергаться наиболее сильному ледоходу и возможен значительный местный размыв дна, что приведет к увеличению стоимости опоры.

По горизонту высоких вод намечается примерная граница моста. Длина моста складывается из суммы отверстий моста( ), суммарной толщины промежуточных опор ( и суммарной ширины деформационных швов( .

Согласно табл.5.2 [1], при наличии карчехода размеры возвышений низа пролетного строения над ГВВ должны быть не менее 1,0 м. минимальная отметка низа конструкции назначается из условия:

Мы знаем уровень проезжей части (УПЧ), однако уровень низа конструкции необходимо найти:

УНК=УПЧ – , УНК=193,4-0,65–0,28-1,8=190,67,

где — строительная высота пролетного строения; включает в себя высоту настила, прогона и дополнительных элементов.

Отметка низа свай опор:

где УЗО – уровень земли в месте установки опоры,

4,0 – глубина забивки свай.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Источник

Инженерные сооружения в транспортном строительстве

Главная > Конспект >Строительство

АК (автомобильная колесная)

Она представляет собой одну двухосную тележку с нагрузкой на ось Р и равномерно-распределенную колейную нагрузку, интенсивностью υ на обе колеи.

Значения P и υ зависят от класса К нагрузки АК .

В настоящее время существует всего лишь 2 класса нагрузки АК .

Класс — это безразмерное обозначение возможных параметров нагрузок от транспорта.

Нагрузка на ось Р = К тс

Интенсивность колеи υ = 0,1 . К тс/м

Например, для 8 класса:

нагрузка на ось тележки составляет Р = К = 8 т

υ = 0,1К = 0,1 . 8 = 0,8 тс/м

Само значение класса зависит от грузонапряженности дороги и материала моста.

К в настоящее время принимаем равное 11 для любых мостов, за исключением деревянных (К=8).

Размеры этой нагрузки и ее установка моделируют реальное угловое движение грузового потока по сооружению. Ширина колеи – 1 м 90 см, ширина колеса – 60 см, расстояние между гранями колес – 2 м 50 см. Расстояние между осями тележки вдоль движения – 1 м 50 см.

Отпечаток колеса тележки – прямоугольный и размер (ширина) прямоугольника (20 см). Для колеи длина отпечатка равна длине ПЧ .

Нагрузка АК , установленная на каждую полосу движения, не может быть больше этих нагрузок, чем полос движения. Следовательно, каждый ряд движения загружен одной тележкой и колейной нагрузкой. Причем колейная нагрузка устанавливается в ряду движения по всей длине моста, а тележка в ряду движения – в любом месте по длине моста.

Поскольку нагрузка АК моделирует реальный транспортный поток, то и тележку, и колейную часть устанавливают как можно ближе к ограждению, но соблюдая правила движения.

А по правилам эксплуатации на мосту выделяют в пределах ширины габарита Г 2 полосы безопасности и ПЧ из одной или нескольких полос. Транспорт двигается по ПЧ , не заезжая на полосы безопасности. При этом возникают границы или пределы, в которых может двигаться нагрузка:

— не ближе 1,5 м от края ПЧ до оси нагрузки.

Между соседними (смежными) полосами нагрузки должно быть не менее 3 м.

Но в процессе эксплуатации возникают различные чрезвычайные ситуации. Например, ремонт, ДТП, мероприятия по содержанию дорог и т.д.

В этих случаях можно использовать для движения полосы безопасности. СНиП выделяет эти случаи, как 1-ый и 2-ой случаи установленной нагрузки АК поперек моста . Причем, поскольку в 1-ом случае идет нормальная эксплуатация моста – по тротуару ходят люди, а во 2-ом случае движение пешеходов запрещено, из всех полос движение разрешено только туда и обратно (2 ряда). Для однополосных мостов – 1 ряд.

Очень редко загружены полностью все ряды движения по всей длине моста одновременно. И, учитывая низкую вероятность этого, СНиП рекомендует в расчетах принимать полную загруженность только 1 ряда, но этот ряд устанавливается поперек моста самым невыгодным образом, остальные ряды полностью загружены только тележками, а колейной частью – на 60%. Это учитывается коэффициентом S 1 , на который умножают все P, υ.

Кроме нормальных штатных функций инженерных сооружений, возможны случаи, когда по дорогам, а следовательно, и по сооружениям проходят нагрузки, отличающиеся от стандартных, причем в большую сторону. Например, провоз сверхтяжелых, больших по размеру грузов. Транспорт, перевозящий эти грузы, проезжает только с разрешения управления дорог и, как правило, медленно, по середине дороги и в одиночном порядке.

В результате многолетней работы и анализа существующей дорожно-транспортной техники установлено, что предельные размеры и массы этих внегабаритных, сверхтяжелых нагрузок могут быть приведены к каким-то среднестатистическим показателям. Поэтому на пропуск таких нагрузок инженерные сооружения проверяют при проектировании; при эксплуатации сооружения на их пропуск по неаварийным (нормальным) сооружениям, не требующим особого разрешения. А все, что выходит за пределы ниже рассматриваемых нагрузок, уже требует разрешения ГИБДД, и т.д.

Внегабаритные сверхтяжелые нагрузки, на которые проверяют мосты, путепроводы, эстакады и трубы, запроектированные под нагрузку АК . К таким нагрузкам относятся НГ-60 и НК-80 . Они примерно копируют соответственно гусеничное транспортное средство и четырехосную прицепную платформу общим весом 80 т.

НГ-60 – нагрузка гусеничная 60 т

НК-80 – нагрузка колесная 80 т

На НГ проверяют мосты, запроектированные под нагрузку А-8 , а НК-80 – под нагрузку А-11 .

И, кроме того, деревянные мосты ввиду низкой прочности их проезжей части проверяют проезжую часть на давление единичной оси.

Рассмотрим размеры и вес этих нагрузок.

НГ-60 – пропускается по оси сооружения (по середине) очень медленно, перегрузок не допускается и движение для пешеходов на это время перекрыто.

Длина гусеницы – 5 м

Между центрами гусениц – 2,6 м

Интенсивность – 12 т/м на 1 м

НК-80 – одиночная, колесная, четырехосная, пропускается медленно по середине сооружения, пешеходной нагрузки нет.

На каждую ось – 20 т

Ширина колеса – 0,8

Одиночная ось аналогична по своим параметрам одной оси тележки нагрузки А-11.

Рассмотренные нагрузки от транспорта были представлены в статическом, неподвижном положении, но эти нагрузки, двигаясь по сооружениям, создают динамичные воздействия и могут отклоняться от своих средних нормативных значений, т.е. для этих нагрузок существуют соответствующие коэффициенты динамичности и надежности, оценивающие и динамические воздействия, и отклонения от нормативного значения.

Коэффициент надежностиﻻ f для нагрузки:

АК ﻻ f = 1,5 при расчетах проезжей части

ﻻ f = 1,5 при λ = 0

λ – длина загружения, промежуточное значение, определяемое интерполяцией.

Для колейной нагрузки АК ﻻ f всегда равняется 1,2.

Для НГ-60 и НК-80 ﻻ f = 1 (перегрузка не допускается).

Динамический коэффициент (1 + μ ), показывая степень динамики развития, зависит:

— от самой временной нагрузки;

— от конструкции (вид, схема);

— от длины загружения

(металл, железобетон — хорошо проводят волны

дерево, камень, грунт – плохо проводят)

Перечисленные факторы нашли свое отражение в эмперических формулах для определения динамического коэффициента. (п.2.22 *СНиП)

1 + μ = 1 + 15/(37,5+ λ)

Для железобетонных балочных пролетных строений, рамных конструкций, для железобетонных сквозных и стоечных опор (тонкостенных):

1 + μ = 1 + (45 – λ)/135

1 + μ = 1 – предельное минимальное значения

Для железобетонных труб, подземных переходов 1 + μ = 1

Для деревянных конструкций 1 + μ = 1,1

К нагрузке НК-80 1 + μ = 1,3 при λ НГ 1 + μ = 1,1

Длина загружения λ — длина той части линии влияния, которая определяет участие элемента в работе, например, длина пролетов, длина элементов.

Для неразрезных конструкций – длина положительных участков линии влияния. Например, от транспорта представ. нереал., отвлеч. нагрузки,

в связи с ростом грузоподъемности и скорости движения, в настоящее время пересматриваются классы нагрузки АК.

У нагрузки № 7, кроме транспортной составляющей, присутствует и нагрузка, создаваемая людьми – пешеходами, проходящими по искусственным сооружениям, т.е. существует нагрузка от пешеходов.

На эту нагрузку рассчитаны:

1. Пешеходные мосты (все элементы).

2. Автодорожные и городские мосты и прочие сооружения.

Рассчитаны тротуары и остальные элементы, кроме тротуаров.

Нагрузка от пешеходов принимается в зависимости от рассчитываемого элемента: чем больше вероятность загружения этого элемента, тем больше нагрузка.

Различают следующие нагрузки от пешеходов:

Вертикальная, равномерно распределенная по площади, интенсивностью 400 кг/м 2 . На эту нагрузку рассчитаны полностью пешеходные мосты, а для остальных мостов – только элементы тротуаров.

Равномерно распределенная вертикально по площади, интенсивностью

p = 400 – 2 . λ кг/м 2

p = 3,92 – 0,0196 λ кПа

На эту нагрузку рассчитаны все мосты и путепроводы (кроме пешеходных и тротуаров). Это нагрузка зависит от длины загружения моста (тротуара пешеходами), причем интенсивность снижается с увеличением длины тротуара, что объясняется другими нагрузками, учитываемыми совместно.

Тротуар – пространство, отведенное для передвижения людей.

Вертикальная и горизонтальная нагрузка на перила:

а) городских мостов – равномерно распределенная нагрузка, интенсивностью 100 кг на погонный метр перил;

б) автодорожных мостов – сосредоточенная сила 130 кг

Это одна единственная из всего перечня, входящая в № 7, которая имеет горизонтальную составляющую. Все остальные – вертикальную.

Эта нагрузка вызвана возможностью опирания людей на перила. Направлена от моста в сторону реки.

Вертикальная сосредоточенная, но по площади 15 х 10 см

— для городских мостов – 1 т;

— для всех остальных — 350 кг.

Ограждения для тротуаров – перила.

При переходе от нагрузки, распределяемой по площади, к нагрузке погонной, необходимо интенсивность нагрузки умножать на ширину рассчитываемого элемента, и тогда найдем погонную нагрузку.

Нагрузка от пешеходов, как и любые временные нагрузки, создает динамичность воздействия и может отклоняться от нормативного значения.

ﻻ f = 1,4 — для нагрузки № 1

1,2 – при учете пешеходной нагрузки, совместно с другими

ﻻ f = 1 — ко всем остальным (№№ 3, 4)

Все остальные временные нагрузки, создаваемые нагрузкой № 7, являются горизонталями и производными от нее. К ним относятся 8-11.

№ 8 – давление грунта от подвижного состава

Методика расчета этой нагрузки изложена в приложении

№ 9 – центробежная нагрузка на мосты, расположенная на кривых R ≤ 600 м.

Принимаем с каждого ряда движения в виде равномерно распределенной нагрузки с учетом коэффициента S i , направлена от центра кривой и приложена на 1,5 м выше ПЧ .

Для R от 0 до 250 м

где: К – класс нагрузки

λ — длина нагружения

P – сила, равная 0,45 т

М – момент, равный 110 т.с/м

Полученные значения интенсивности центробежной нагрузки должны быть в пределах

R х К (тс/м) ≥ ύ h > 0,05 х К (т.с/м)

Нагрузка № 10 – поперечные толчки и удары. Учитывается только от нагрузки АК .

Возникает вследствие внезапного резкого изменения траектории движения транспортного средства и учитывается

Как горизонтальная поперечная нагрузка, направленная поперек сооружения в уровне ПЧ.

2. При расчете ограждений как горизонтальной и продольной нагрузки.

В одном слое это представляет собой равномерно распределенную, интенсивностью 0,04 К т.с/м, или сосредоточенную силу 0,6 К.

На эту нагрузку (на большую из них) рассчитаны пролетные строения, опоры и прочие элементы моста.

Во втором слое при расчете ограждения эта нагрузка зависит от вида ограждения. Для железобетонных сплошных ограждений ее принимают в виде горизонтально-поперечной нагрузки, равной 1,2 К тс. Распределена на длине 1 м и приложена на высоте 2/3 ограждения от уровня ПЧ.

Для металлических барьерных ограждений эта нагрузка прикладывается на стойки в виде продольной и поперечной нагрузки и приложенной в уровне верха ограждения.

— поперек сооружения – 0,45 К тс

— вдоль проезда — 0,25 К тс

Расстояние между стойками – 2,5-3 м

Если металлический брус ограждения непрерывный, то нагрузку, которая действует вдоль, можно распределить на 4 рядом расположенные стойки.

Поперечная нагрузка 0,6 К тс, приложенная горизонтально по длине 0,5 м в уровне верха бордюра.

Из этого перечня нагрузок видно, что эти нагрузки отображают реальное движение транспортного средства (нагрузка АК ).

1 сл. – эта нагрузка возникает при изменении траектории движения, но автомобиль или нагрузка не наезжает на ограждение.

2 сл. – эта нагрузка прямо возникает при наезде на ограждение. И на нее другие элементы, кроме самих ограждений, не просчитывают.

Нагрузки НГ-60, НК-80 и одиночная ось не учитываются по двум причинам:

1 причина – они двигаются с медленной скоростью, следовательно резких изменений траектории быть не может.

2 причина – они очень велики.

Нагрузка № 11 – тормозная нагрузка или сила тяги – горизонтальная, продольная нагрузка. Ее принимают с одного направления нагрузки с учетом коэффициента C 1 (коэффициент, учитывающий вероятность полного нагружения).

Нагрузка принимается равной 50% от веса колейной части нагрузки АК . Приложена в уровне 1,5 м от ПЧ, но существуют исключения для балочных разрезных конструкций:

— для устоев в уровне ПЧ;

— для промежуточных опор – в уровне верха подферменной площадки.

Вдоль моста направлена в любую сторону.

Прочие временные нагрузки

1. (12) Ветровая нагрузка

Направлена перпендикулярно сооружению, к его боковой поверхности, наиболее возможной. Представляет собой равномерно-распределенную горизонтальную нагрузку.

Для мостов за площадь обычно принимается фасад моста, начиная от ГМВ. Продольную нагрузку на мост принимают равной 20% от поперечной.

Интенсивность ветровой нагрузки определить довольно сложно. (п.2.24).

Но для предварительных расчетов с достаточной точностью можно принять при проектировании индивидуальных, нетиповых конструкций.

60 кг на 1 м 2 – при загружении нагрузкой № 7

100 кг на 1 м 2 – при незагружении (при отсутствии нагрузки № 7).

2. (13) Ледовая нагрузка

Действует только на опоры мостов. Порядок расчета – см. приложение10.

Приложена горизонтально, по периметру опоры.

На 0,3 t ниже уровня воды, при котором рассматривается эта нагрузка.

t – расчетная толщина льда, равная 0,8 от max за зимний период.

При расчете ледовой нагрузки возникает 2 варианта:

1. Наибольшая прочность льда при первой подвижке льда. Высота приложенной нагрузки относительно дна минимальна.

2. Прочность льда минимальна при высоком ледоходе. И отметка наивысшая относительно льда.

Нагрузка от льда возникает или при остановке ледяного поля или при разрушении льдины об опору.

Определив эти 2 нагрузки, к дальнейшим расчетам берут наименьшее из этих значений.

Источник

Читайте также:  Что значит коричневые выделения у девочки 13 лет
Оцените статью