- Значение слова «когерентность»
- когере́нтность
- Фразеологизмы и устойчивые сочетания
- Делаем Карту слов лучше вместе
- Значение слова когерентность
- Словарь лингвистических терминов
- Термины и понятия лингвистики: Лексика. Лексикология. Фразеология
- Философский словарь (Конт-Спонвиль)
- Толковый переводоведческий словарь
- Термины и понятия: Методы исследования и анализа текста. Словарь-справочник
- Мир Лема — словарь и путеводитель
- Энциклопедический словарь
- Большая Советская Энциклопедия
- Квантовая азбука: «Когерентность»
Значение слова «когерентность»
- Когере́нтность (от лат. cohaerens — «находящийся в связи»):
Когерентность нескольких колебательных или волновых процессов (в физике) — согласованность (скоррелированность) этих процессов во времени, проявляющаяся при их сложении.
Когерентность массива ставок (в теории вероятностей) — свойство массива ставок, заключающееся в том, что спорщик, сделавший ставки на некоторые исходы некоторых событий, никогда не проиграет спор вне зависимости от исходов этих событий.
Когерентность текста (в лингвистике) — целостность текста, заключающаяся в логико-семантической, грамматической и стилистической соотнесённости и взаимозависимости составляющих его элементов (слов, предложений и т. д.).
Когерентность памяти (в информатике) — свойство компьютерных систем, заключающееся в том, что два или более процессора или ядра могут получить доступ к одной области памяти.
когере́нтность
1. свойство по значению прилагательного когерентный
3. физ. в квантовой оптике характеристика интерференции квантовых состояний поля излучения ◆ Длина когерентности лазерного луча достигала нескольких метров. Александр Жданов, «Проникновение», 1974 г. // «Техника — молодежи» (цитата из НКРЯ)
4. хим. свойство химических систем формировать колебательные режимы реакции
5. лингв. целостность текста, заключающаяся в логико-семантической, грамматической и стилистической соотнесённости и взаимозависимости составляющих его элементов структуры (слов, предложений и т. д.)
Фразеологизмы и устойчивые сочетания
Делаем Карту слов лучше вместе
Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!
Спасибо! Я стал чуточку лучше понимать мир эмоций.
Вопрос: имплантат — это что-то нейтральное, положительное или отрицательное?
Источник
Значение слова когерентность
Словарь лингвистических терминов
1. (лат. cohaerens находящийся в связи)
Согласованное протекание во времени нескольких процессов.
2. Глобальная связность в тексте (Н.А. Николина).
Термины и понятия лингвистики: Лексика. Лексикология. Фразеология
(лат. cohaerens находящийся в связи)
Согласованное протекание во времени нескольких процессов.
Философский словарь (Конт-Спонвиль)
Связность (co-haerens), но не столько физическая, сколько логическая. Когерентным называют то, что непротиворечиво. Нетрудно заметить, что когерентность не может служить доказательством, вернее, служит доказательством только самой себя. Связная и непротиворечивая ошибка еще не становится истиной.
Толковый переводоведческий словарь
согласованное протекание во времени нескольких процессов.
Термины и понятия: Методы исследования и анализа текста. Словарь-справочник
Глобальная связность в тексте (Н.А. Николина).
Мир Лема — словарь и путеводитель
(от лат. cohaerentia — связь) в физике — постоянство разности фаз двух колебательных процессов, в широком смысле — связанность двух процессов:
* «Связность и логичность произведения «онтоклассической» тематики не имеет, очевидно, ничего общего с когерентностью более «нормального» текста». — Фантастика и футурология *
* «Кстати, так как практически было бы абсурдным предполагать полную безаварийность любой технологии, то «когерентные расстройства», с которыми сталкиваются герои Дика, все эти провалы, деформации, аномалии окружающего их мира можно с полным правом отнести за счет неполадок в фантоматизаторах». — Фантастика и футурология *
* «В противном случае в результате операций по трансформации получается распадающийся без тени когерентности материал, а не новая — фантастическая организация смысловых значений». — Фантастика и футурология *
* «Подобного рода идеи сейчас в моде; например, у меня на столе лежит вышедший несколько лет назад увесистый трактат Е.Реджиса-младшего из Кембриджского университета, который проповедует эту дискогеренцию, взаимную непереводимость наук, и поверхностному читателю может даже показаться, что первая часть моего эссе «Ересь» содержит версии «непереводимой разнородности наук других цивилизаций» и довольно активно поддерживает их». — Тайна китайской комнаты. Ересь *
* «Добавлю еще, что определенные виды раздражения (изученные лучше всего благодаря трепанации черепа) мозговой коры дают полностью когерентные воспринимающие эффекты; раздраженный мозг реагирует, например, таким воспроизведением конкретного воспоминания, что оперируемый «чувствует себя», например, в театре, «видит» какую-то сцену и «слышит» какие-то ведущиеся на ней разговоры». — Тайна китайской комнаты. Компьютеризация мозга *
* Это значит, что первый исследовательский импульс, как я до сих пор вижу, исходит не изнутри cyberspace, рождающего программы и компьютеры (следующих поколений), а от покровителей этого замкнутого в электронике мира, представляющего высоко когерентное, путанное, но и упорядоченное некое целое. — Тайна китайской комнаты. Выращивание информации? *
* «Если абонент располагает, скажем, преобразовательно-пропускной мощностью порядка, например (условно), 10 в 9 степени бит в секунду, то мы «затопим» абонента, посылая ему 10 в 15 степени бит в секунду, особенно если он не может знать, какие биты являются носителями некоторой связной информации, а какие — чисто случайным месивом». — Мегабитовая бомба. Ономастическая киберомахия *
Энциклопедический словарь
(от лат. cohaerens — находящийся в связи), согласованное протекание во времени нескольких колебательных или волновых процессов. Если разность фаз 2 колебаний остается постоянной во времени или меняется по строго определенному закону, то колебания называются когерентными. Колебания, у которых разность фаз изменяется беспорядочно и быстро по сравнению с их периодом, называются некогерентными.
Большая Советская Энциклопедия
(от латинского cohaerens ≈ находящийся в связи), согласованное протекание во времени нескольких колебательных или волновых процессов, проявляющееся при их сложении. Колебания называются когерентными, если разность их фаз остаётся постоянной во времени и при сложении колебаний определяет амплитуду суммарного колебания. Два гармонических (синусоидальных) колебания одной частоты всегда когерентны. Гармоническое колебание описывается выражением: х = A cos (2pvt + j), (
где х ≈ колеблющаяся величина (например, смещение маятника от положения равновесия, напряжённость электрического и магнитного полей и т.д.). Частота гармонического колебания, его амплитуда А и фаза j постоянны во времени. При сложении двух гармонических колебаний с одинаковой частотой v, но разными амплитудами A1 и А2 и фазами j1 и j2, образуется гармоническое колебание той же частоты. Амплитуда результирующего колебания:
может изменяться в пределах от A1 + А2 до А1 ≈ А2 в зависимости от разности фаз j1 ≈ j2 (). Интенсивность результирующего колебания, пропорциональная Ар2 также зависит от разности фаз.
В действительности идеально гармонические колебания неосуществимы, так как в реальных колебательных процессах амплитуда, частота и фаза колебаний непрерывно хаотически изменяются во времени. Результирующая амплитуда Ар существенно зависит от того, как быстро изменяется разность фаз. Если эти изменения столь быстры, что не могут быть замечены прибором, то измерить можно только среднюю амплитуду результирующего колебания . При этом, т.к. среднее значение cos (j1≈j2) равно 0, средняя интенсивность суммарного колебания равна сумме средних интенсивностей исходных колебаний: ═и, таким образом, не зависит от их фаз. Исходные колебания являются некогерентными. Хаотические быстрые изменения амплитуды также нарушают К. .
Если же фазы колебаний j1 и j2 изменяются, но их разность j1 ≈ j2 остается постоянной, то интенсивность суммарного колебания, как в случае идеально гармонических колебаний, определяется разностью фаз складываемых колебаний, то есть имеет место К. Если разность фаз двух колебаний изменяется очень медленно, то говорят, что колебания остаются когерентными в течение некоторого времени, пока их разность фаз не успела измениться на величину, сравнимую с p.
Можно сравнить фазы одного и того же колебания в разные моменты времени t1 и t2, разделённые интервалом t. Если негармоничность колебания проявляется в беспорядочном, случайном изменении во времени его фазы, то при достаточно большом t изменение фазы колебания может превысить p. Это означает, что через время t гармоническое колебание «забывает» свою первоначальную фазу и становится некогерентным «само себе». Время t называется временем К. негармонического колебания, или продолжительностью гармонического цуга. По истечении одного гармонического цуга он как бы заменяется другим с той же частотой, но др. фазой.
При распространении плоской монохроматической электромагнитной волны в однородной среде напряжённость электрического поля Е вдоль направления распространения этой волны ох в момент времени t равна:
где l = сТ≈ длина волны, с ≈ скорость её распространения, Т ≈ период колебаний. Фаза колебаний в какой-нибудь определённой точке пространства сохраняется только в течение времени К. т. За это время волна распространится на расстояние сt и колебания Е в точках, удалённых друг от друга на расстояние сt, вдоль направления распространения волны, оказываются некогерентными. Расстояние, равное сt вдоль направления распространения плоской волны на котором случайные изменения фазы колебаний достигают величины, сравнимой с p, называют длиной К., или длиной цуга.
Видимый солнечный свет, занимающий на шкале частот электромагнитных волн диапазон от 4Ч1014 до 8Ч1014гц, можно рассматривать как гармоническую волну с быстро меняющимися амплитудой, частотой и фазой. При этом длина цуга
10≈4 см. Свет, излучаемый разреженным газом в виде узких спектральных линий более близок к монохроматическому. Фаза такого света практически не меняется на расстоянии 10 см. Длина цуга лазерного излучения может превышать километры. В диапазоне радиоволн существуют более монохроматические источники колебаний (см. Кварцевый генератор , Квантовые стандарты частоты ), а длина волн l во много раз больше, чем для видимого света. Длина цуга радиоволн может значительно превышать размеры Солнечной системы.
Всё сказанное справедливо для плоской волны. Однако идеально плоская волна так же неосуществима, как и идеально гармоническое колебание (см. Волны ). В реальных волновых процессах амплитуды и фаза колебаний изменяются не только вдоль направления распространения волны, но и в плоскости, перпендикулярной этому направлению. Случайные изменения разности фаз в двух точках, расположенных в этой плоскости, увеличиваются с увеличением расстояния между ними. К. колебаний в этих точках ослабевает и на некотором расстоянии l, когда случайные изменения разности фаз становятся сравнимыми с p, исчезают. Для описания когерентных свойств волны, в плоскости, перпендикулярной направлению ее распространения, применяют термин пространственная К., в отличие от временной К., связанной со степенью монохроматичности волны. Все пространство, занимаемое волной, можно разбить на области, в каждой из которых волна сохраняет К. Объём такой области (объём К.) приблизительно равен произведению длины цуга сt на площадь круга диаметром / (размер пространственной К.).
Нарушение пространственной К. связано с особенностями процессов излучения и формирования волн. Например, пространственная К. световой волны, излучаемой протяжённым нагретым телом, исчезает на расстоянии от его поверхности всего в несколько длин волн, т.к. разные части нагретого тела излучают независимо друг от друга (см. Спонтанное излучение ). В результате вместо одной плоской волны источник излучает совокупность плоских волн, распространяющихся по всем возможным направлениям. По мере удаления от теплового источника (конечных размеров), волна все больше и больше приближается к плоской. Размер пространственной К. l растет пропорционально l ═≈ где R ≈ расстояние до источника, r ≈ размеры источника. Это позволяет наблюдать интерференцию света звёзд, несмотря на то, что они являются тепловыми источниками огромных размеров. Измеряя / для света от ближайших звёзд, удаётся определить их размеры r. Величину l/r называют углом К. С удалением от источника интенсивность света убывает как 1/R2. Поэтому с помощью нагретого тела нельзя получить интенсивное излучение, обладающее большой пространственной К.
Световая волна, излучаемая лазером , формируется в результате согласованного вынужденного излучения света во всем объеме активного вещества. Поэтому пространственная К. света у выходного отверстия лазера сохраняется во всем поперечном сечении луча. Лазерное излучение обладает огромной пространственной К., т. е. высокой направленностью по сравнению с излучением нагретого тела. С помощью лазера удаётся получить свет, объём К. которого в 1017 раз превышает объём К. световой волны той же интенсивности, полученной от наиболее монохроматических нелазерных источников света.
В оптике наиболее распространённым способом получения двух когерентных волн является расщепление волны, излучаемой одним немонохроматическим источником, на две волны, распространяющиеся по разным путям, но, в конце концов, встречающихся в одной точке, где и происходит их сложение (рис. 2). Если запаздывание одной волны по отношению к другой, связанное с разностью пройденных ими путей, меньше продолжительности цуга, то колебания в точке сложения будут когерентными и будет наблюдаться интерференция света. Когда разность путей двух волн приближается к длине цуга, К. лучей ослабевает. Колебания освещённости экрана уменьшаются, освещённость I стремится к постоянной величине, равной сумме интенсивностей двух волн, падающих на экран. В случае неточечного (протяжённого) теплового источника два луча, пришедшие в точки А и В, могут оказаться некогерентными из-за пространственной некогерентности излучаемой волны. В этом случае интерференция не наблюдается, так как интерференционные полосы от разных точек источника смещены относительно друг друга на расстояние, большее ширины полосы.
Понятие К., возникшее первоначально в классической теории колебаний и волн, применяется также по отношению к объектам и процессам, описываемым квантовой механикой (атомные частицы, твёрдые тела и т.д.).
Лит.: Ландсберг Г. С., Оптика, 4 изд., М., 1957; Горелик Г. С., Колебания и волны, 2 изд., М., 1959; Фабрикант В. А., Новое о когерентности, «Физика в школе», 1968, ╧ 1; Франсон М., Сланский С., Когерентность в оптике, пер. с франц., М., 1968; Мартинсен В., Шпиллер Е., Что такое когерентность, «Природа», 1968, ╧ 10.
Источник
Квантовая азбука: «Когерентность»
Можно ли потревожить квантовую систему чуть-чуть, а потом вернуть все обратно?
Квантовый мир очень далек от нашего, поэтому его законы часто кажутся нам странными и контринтуитивными. Однако важные новости из квантовой физики приходят буквально каждый день, так что иметь о них правильное представление сейчас необходимо — иначе работа физиков в наших глазах превращается из науки в магию и обрастает мифами. Мы уже говорили о квантовых компьютерах, нелокальности и квантовой телепортации. Сегодня речь пойдет о еще одной загадочной квантовой штуке — когерентности. Рассказывает о ней младший научный сотрудник Российского квантового центра Алексей Федоров.
Что такое когерентность? Есть ли какие-то хорошие аналогии из классической физики?
Понятие когерентности впервые возникает именно в классической физике, когда речь идет про колебания. Классическая когерентность — это постоянство относительной фазы между двумя или более волновыми процессами одной частоты. Когда говорят о когерентности всегда вспоминают интерференцию — эффект, при котором суммарный поток энергии от нескольких когерентных источников в некоторой точке пространства получается не непосредственным сложением потоков энергии от каждого источника, а чуть сложнее. Говоря формально, нужно сложить комплексные амплитуды, которые описывают приходящую от каждого источника волну, потом взять модуль полученного комплексного числа и возвести его в квадрат (с некоторым коэффициентом, чтоб с размерностями все было хорошо).
За счет суммирования комплексных амплитуд, а не интенсивностей, в пространственном профиле интенсивности образуется хорошо знакомая интерференционная картинка. Именно отличие результирующей интенсивности волнового процесса от суммы интенсивностей его составляющих и есть признак интерференции.
Теперь к квантовой механике. Одним из основных положений квантовой механики является то, что микроскопические частицы в своем поведении проявляют волновые свойства. Но если в классической физике мы говорили, например, о волнах напряженности электромагнитного поля, то для микроскопических частиц речь идет волнах вероятности, описывающимися комплексными «амплитудами вероятности», известными также под названием «волновая функция». Именно эта идея заложена в уравнение Шрёдингера.
Для волн вероятности, как и любых других волн, также характерны все те же эффекты, связанные с возможностью наложения волн друг на друга. В квантовой механике такое наложение называют (когерентной) суперпозицией. Именно суперпозиция приводит к «квантовым» эффектам дифракции и интерференции.
Квантовые системы могут находиться в когерентной суперпозиции состояний, даже если это суперпозиция (с классической точки зрения) взаимоисключающих состояний. Прямое применение квантовых законов к классическому миру ведет к парадоксальным ситуациям, одна из наиболее известных — кошка Шрёдингера. Да, в ящик Шрёдингер хотел посадить именно кошку (die Katze), а не кота.
Почему когерентность необходима для квантовых вычислений?
Квантовая когерентность позволяет реализовать квантовый параллелизм. Архитектура квантовых компьютеров отличается от архитектуры классический вычислений в нескольких важных аспектах (про это в квантовой азбуке уже говорилось, но напомнить основы будет не лишним).
Система битов заменяется на систему кубитов, которая находится в некотором начальном состоянии. Логические операции выполняются не классическими логическими элементами, а их квантовыми аналогами. Таким образом, в квантовом компьютере через квантовый логический элемент («гейт») может проходить сразу целый набор (когерентная суперпозиция) входных сигналов, дающих суперпозицию соответствующих выходных сигналов. Это и обеспечивает преимущество квантовых вычислений над классическими в некоторых классах задач, например, в задаче факторизации.
Правда тут есть тонкость: после того как квантовый компьютер закончит вычисления, ответы к задачам, которые он решал, будут также находиться в состоянии суперпозиции. Как только мы попытаемся выяснить, каковы эти ответы, мы получим только один, случайно выбранный ответ. Но проделав вычисления много раз, мы можем говорить об ответе с достаточной степенью вероятности.
Квантовый компьютер имеет преимущество над классическим в определенных классах задач. С одной стороны, это ограничивает его применения и свидетельствует о том, что он, возможно, не заменит нам классический персональный компьютер. Хотя, высказывая подобные предположения стоит помнить о том, что на заре компьютерной эры миру приписывали необходимость всего в пяти компьютерах.
Кроме того, класс задач, с которым квантовый компьютер справляется лучше классического, лежит в основе современных представлений о криптографии и информационной безопасности. Так что возможное появление квантового компьютера уже меняет правила в информационных технологиях.
Что такое декогеренция, какие процессы могут к ней приводить?
В классической физике явление декогеренции также существует. Декогеренция — нарушение когерентности — это исчезновение когерентных свойств, связанное с потерей постоянства относительной фазы между источниками, что, например, приводит к разрушению интерференционной картины, о которой мы говорили выше.
В квантовой механике все сложнее и намного интереснее. Декогеренция представляет собой взаимодействие квантовой системы с окружающей средой, при котором квантовое состояние системы неконтролируемо изменяется. С точки зрения теории квантовой информации декогеренции соответствует возникновение запутанности между степенями свободы квантового состояния и степеняими свободы окружения.
При этом в окружение попадает часть информации о квантовом объекте, в то время, как в квантовую систему попадает часть информации об окружении. Декогеренция происходит из-за того, что хаос неопределенности состояния окружения врывается в состояние квантовой системы, изменяя его неконтролируемым образом.
Рассмотрим это на примере знаменитого опыта Юнга: будем стрелять из «квантового пулемета» частницами на экран с двумя щелями . Если после экрана поставить детектор электронов, то мы увидим интерференционную картину. В опыте Юнга интерференция пропадает тогда, когда в окружение попадает информации, через какую из двух щелей прошла частица. Это может быть связано, как с наличием специальной экспериментальной установки (например, подсвечивающих каждую из щелей «фонариков»), так и с неконтролируемыми экспериментаторами явлениями. Казалось бы это чудо, но нет — это «взаимодействие» квантовой системы с наблюдателем.
Если рассматривать поведение всех, в том числе и макроскопических, объектов с точки зрения квантовой механики, то декогеренции соответствует возникновение запутанности между конкретным квантовым объектом и окружением. По причине декогеренции мы не видим кошек, одновременно бегущих в противоположных направлениях.
Как определить, что произошла декогеренция?
Декогеренцию можно обнаружить, например, по исчезновению интерференционной картины. Есть такой простой эксперимент «Welcher Weg» («который путь»). В нем, фактически, мы просто посылаем фотоны на светоделитель, через который фотон либо проходит (назовем это «путь 1»), либо отражается (назовем это «путь 2»). Затем с использованием зеркал мы сводим два пути в другой светоделитель, на каждом из выходов которого стоит детектор одиночных фотонов.
К примеру, если в этом эксперименте интерферометр (т.е. соотношение между длинами путей) изначально был настроен на то, что все фотоны выходят строго в одном из двух направлений выходного светоделителя. При декогеренции, т.е. разрушения состояния когеретной суперпозиции между путями, они будут выходить с вероятностью 1/2 в каждом из двух направлений.
Предположим, квантовый компьютер выполнял некую операцию и произошла декогеренция (например, на середине исполнения алгоритма Шора, или каких-либо более простых операций). Каков будет результат вычисления, чем он будет отличаться от вычисления на полностью когерентных кубитах?
Декогеренция будет приводит к искаженному результату вычислений (который, возможно, еще и будет меняться от запуска к запуску) в выходном квантовом регистре. Например, в результате выполнения алгоритма Шора для числа 15 мы будем получать не стабильно 3 и 5, а с какой-то вероятностью 3 и 5, и с какой-то вероятностью всевозможные иные результаты (2 и 4, 3 и 6 и т.д.)
Как бороться с декогеренцией? Можете ли Вы привести какие-то примеры? Сложнее ли сохранять когерентность в многокубитных системах?
Для борьбы с декогеренцией нужен контроль окружения, поскольку даже малейшее воздействие окружения может привести к декогеренции. Таким образом, нужно чтобы изучать квантовые суперпозиции, необходимо тщательно изолировать их от окружающей среды.
Интересно, что последнее обстоятельство породило концепцию квантового сенсора: раз квантовые состояния так чувствительны к внешним воздействиям, значит с их помощью можно проводить сверхчувствительные измерения. Недавно с помощью квантового сенсора на NV-центрах было проведено измерение сигнала от отдельного нейрона.
На практике для борьбы с декогеренцией используются низкие температуры и различные компенсационные схемы для медленно меняющихся флуктуаций в параметрах окружающей среды. Например, ученые научились обращать декогеренцию вспять в экспериментах с «спиновым эхо» (о нем чуть ниже).
В многокубитных системах сложнее балансировать между необходимостью заставить кубиты «слышать» друга друга и «разговаривать» между собой, и при этом «не слышать» окружение. Принципиальных физических ограничений для этого нет, но на пути к решению такой задачи есть ряд технологический затруднений.
Как долго сохраняется когерентность в современных кубитах?
Недавно ученые Мэрилендского университета построили устройство из пяти кубитов на основе ионов иттербия в электромагнитных ловушках (о ней N+1 писал). В частности, в этой работе, являющейся одной из самых свежих, это времена порядка секунд.
Насколько эта величина соответствует требованиям, предъявляемым концепцией квантовых компьютеров?
Нужно чтобы время когерентности превосходило время, за которое происходит вычисление и коррекция ошибок. Таким образом, достижимое время когерентности является достаточным чтобы проводить вычисления. Однако этого пока недостаточно, чтобы сделать полноценный и универсальный квантовый компьютер, поскольку для этого требуется долговременная память и другие элементы, в которых время когерентности должно быть больше. Другой интересный подход состоит в развитии топологических квантовых вычислений, которые являются устойчивыми к ошибкам.
Как связана декогеренция и коллапс волновой функции? Это про одно и то же?
Это «добрый полицейский» и «злой полицейский».
Суть обоих этих процессов состоит в утечке информации о состоянии квантовой системы в окружающую среду. Когда говорят о декогеренции, данный процесс представляется относительно плавным и растянутым во времени — как допрос доброго полицейского. В случае коллапса он подразумевается практически мгновенным и интенсивным — злому полицейскому нужны ответы сразу. И неважно что там с дальше будет с нашей квантовой системой.
Часто говорят о коллапсе волновой функции в момент измерения, хотя фактически измерение есть срежессированная версия декогеренции, при которой роль окружения берет на себя измерительный прибор, транслирующий информацию о квантовой системе на макроскопический уровень (условно говоря, на отклонение стрелки). Можно сказать, также, что коллапс волновой функции представляет собой предельный случай декогеренции.
А можно декогеренцию чуть-чуть сломать, а потом вернуть на место?
Исходя из природы процесса декогеренции понятно, что для обращения декогеренции требуется вернуть информацию, известную окружению о квантовой системе, обратно в квантовую систему, т.е. макроскопическому окружению требуется её «забыть». В общем, это очень сложно, поскольку процесс утечки информации является необратимым из-за того, что степеней свободы, в которых эта информация может храниться чрезвычайно много, и все они быстро обмениваются ей между собой. Поэтому чтобы вернуть все на свои места нужно достаточно хорошо контролировать окружение. Все как у людей, в общем.
Однако принципиально трюк по обращению декогеренции возможен, например, в эксперименте под названием «спиновое эхо». Его суть состоит в том, что время эволюции квантовой системы (например, ядерного спина) было гораздо меньше, чем время характерного изменения внешних условий (магнитного поля). Применяя специальную последовательность операций, можно обращать процесс утечке информации о квантовой системы вспять.
Подготовили материал Владимир Королев и Андрей Коняев
Источник