- Калибровка камеры для повышения точности цветопередачи
- Создание профиля камеры
- Использование индивидуальных профилей
- Документация
- Что такое калибровка фотоаппарата?
- Модели камеры
- Модель камеры с точечной диафрагмой
- Параметры калибровки фотоаппарата
- Внешние параметры
- Внутренние параметры
- Искажение при закрытых дверях калибровка
- Радиальное искажение
- Тангенциальное искажение
- Ссылки
Калибровка камеры для повышения точности цветопередачи
Теория предельного дохода гласит: если понемногу претворять в жизнь небольшие изменения в каждом аспекте вашей деятельности, то результирующее улучшение будет весьма впечатляющим. Эту теорию легко применить и к фотографическому рабочему процессу.
Travel-фотографу, коим я и являюсь, приходится делать огромное количество фотографий с совершенно разными сюжетами. Из недавней двухдневной поездки в Бельгию я привез около двух тысяч фото. И если вы любите вдумчиво просматривать и сортировать карточки на компьютере за чашечкой кофе, то даже нескольких дней вам может не хватить на то, чтобы обработать весь фотосет. В таком случае оптимальный вариант – добиться максимального сходства камерного JPEG с реальной картинкой, а на постобработку тратить минимум времени.
Один из способов такой экономии времени на обработке за компьютером – калибровка вашего фотоаппарата. Вы наверняка слышали о том, что в цифровой фотографии принято калибровать мониторы для того, чтобы добиться точной цветопередачи. Более того, некоторые скрупулезные личности калибруют даже принтеры — те, кому важно стопроцентное совпадение изображения на экране и на бумаге. Однако, далеко не все задумываются о такой вещи, как калибровка камеры.
Принцип калибровки, вне зависимости от устройства, одинаков. Вы создаете специальный профиль для своего устройства, и специальное программное обеспечение, предназначенное для управления цветом, вносит соответствующие поправки в изображение на выходе. Ведь что такое калибровка, скажем, монитора? Вы просто измеряете то, насколько цветопередача вашего экземпляра отклоняется от эталона, и вносите нужные поправки. Топовые модели могут быть довольно близки к профессиональным стандартам, в то время как цветопередача монитора для массового сегмента может быть весьма далека от идеала. Итоговый профиль исправляет отклонения по цвету, добиваясь корректной цветопередачи.
Разные модели камер видят цвет по-разному, поэтому, чтобы передать картинку так, как запомнил ее ваш глаз и мозг, при постобработке необходимо совершить набор определенных действий. Предварительная калибровка же дает вам весомое преимущество – вам нужно будет совершить эти телодвижения всего один раз для всех снимков. Таким образом, время, затрачиваемое на обработку, значительно сокращается.
Калибровка камеры, в общем, работает так: вы измеряете любые отклонения во «взгляде» камеры на окружающий мир, после чего создаете профиль, который устраняет эти отклонения на этапе создания камерного JPEG из RAW-файла.
Несколько лет назад я понял на собственном опыте, что калибровка важна. Тогда я обрабатывал фото заката в Ирландии, снятого на Nikon D2x. Цвета в JPEG по умолчанию получились блеклыми и с явным наличием желтого оттенка, в то время как я отлично помнил яркие пурпурные краски этого заката. Вдруг, по какому-то наитию, я решил использовать калибровочное фото с эталонной цветопередачей, которое я по привычке делал перед каждой съемкой, но никогда до этого не использовал. Я создал с его помощью профиль, применил его ко всей съемке и с удивлением увидел, как каждое фото заиграло новыми, гораздо более реалистичными красками и оттенками.
Применение профиля не всегда заметно меняет цветопередачу, но, как мы уже упомянули выше, теория предельного дохода учит — незаметные улучшения имеют свойство накапливаться. Создание цветовых профилей под вашу камеру — довольно несложное дело. Я использую Xrite ColorChecker Passport и специальный плагин, который позволяет создавать профили прямо из файлов в Adobe Lightroom. Никто не запрещает использовать отдельное, обычно идущее в комплекте с камерой, ПО, чтобы создавать подогнанные под определённый экземпляр камеры профили для Adobe Camera Raw. Компания Adobe хранит эти профили в файлах с DNG расширением, но у вас нет нужды конвертировать гигабайты ваших RAW-архивов в DNG (аббревиатура для Adobe Digital Negative) для применения этих профилей.
Классический вариант эталонной мишени для калибровки состоит из 24 цветов.
Создание профиля камеры
Далее я опишу свой рабочий процесс в Adobe Lightroom.
В Lightroom выберите предварительно импортированный калибровочный снимок. В меню File выберите команду Export и далее загрузите пресет ColorChecker Passport, который был установлен автоматически вместе с ПО для корректной работы калибратора. Вам нужно только решить, как назвать новый профиль — автоматика сделает остальное.
После перезапуска Lightroom, получившийся профиль может быть применен к снимку в выпадающем списке Profile панели Camera Calibration. Однако стоит помнить, что вам будут доступны только профили той камеры, которой вы сделали обрабатываемый RAW-файл. Продвинутые пользователи могут сохранить данный профиль как часть профиля Developer Preset и применить его сразу к нескольким фото при импорте.
Есть один нюанс. Теоретически, калибровать камеру, то бишь делать калибровочный снимок, нужно при каждой смене объектива, изменении источника освещения или даже смене значения ISO.
На практике же, за исключением очень специфичных условий работы с дотошно выставленным освещением и т.п., эти постоянные калибровки не нужны и сильно замедляют ваш рабочий процесс. «Фишка» здесь в том, чтобы найти нужный баланс между необходимостью подготовки и применения огромного количества разнообразных профилей и тем фактом, что ваш единственный профиль может не «лечь» корректно на все ваши кадры. Но, как и в большинстве других случаев, когда сравниваются калиброванный и некалиброванный прибор, даже одна единственная калибровка камеры очень сильно помогает в процессе работы фотографа.
Использование индивидуальных профилей
Мне, как travel-фотографу, удобно под каждое место съемки иметь специально заточенный профиль. Если я снимаю в индийском Ладакхе, что близ Гималай, я использую калибровочные снимки оттуда. Если в этой же поездке я отправляюсь в совершенно другой район, например, пышно цветущий Керал в Южной Индии, я повторяю всё заново.
Программа из комплекта ColorChecker Passport позволяет объединить два калибровочных изображения в одно, создавая при этом так называемый двойной профиль Dual-Illuminant DNG Profile. Таким образом можно обеспечить более точную цветопередачу в случае, если вы снимаете при постоянно меняющемся освещении, отличающемся от того, при котором сделан первый калибровочный кадр. Для создания такого двойного профиля необходимо сделать два калибровочных фото в кардинально разных условиях освещения. Затем из этих двух снимков создается двойной профиль, который обладает более точной цветопередачей, чем первоначальный вариант с одиночным снимком.
Когда вы откалибруете камеру, вы сможете применять свои профили автоматически при импорте с помощью настройки Develop Preset.
Если вы не пользуетесь Lightroom, можно использовать отдельное ПО для калибратора ColorChecker Passport, чтобы с его помощью создавать DNG профили. Эти DNG профили читаются множеством программ для RAW-процессинга, в том числе Adobe Camera Raw и Capture One. К сожалению, на данный момент Apple Aperture не поддерживает такие профили.
Об авторе. Стив Дэйви – фотограф и писатель из Лондона. Большую часть времени путешествует по самым экзотическим и живописным уголкам этой планеты. Недавно выпустил второе издание книги Footprint Travel Photography, которая стала настольной книгой любого путешественника с камерой в руках.
Если Вам понравился этот материал, то мы будем рады, если Вы поделитесь им со своими друзьями в социальной сети:
Фотожурнал / Интересное / Калибровка камеры для повышения точности цветопередачи
Тэги к статье: урок, RAW, постобработка, фототехника
Дата: 2015-02-13 | Просмотров: 22483
Источник
Документация
Что такое калибровка фотоаппарата?
Geometric camera calibration, также называемый camera resectioning, оценивает параметры линзы и датчика изображения изображения или видеокамеры. Можно использовать эти параметры, чтобы откорректировать для искажения объектива, измерить размер объекта в мировых единицах измерения или определить местоположение камеры в сцене. Эти задачи используются в приложениях, таких как машинное зрение, чтобы обнаружить и измерить объекты. Они также используются в робототехнике для систем навигации и 3-D реконструкции сцены.
Примеры того, что можно сделать после калибровки камеры:
Параметры камеры включают внутренние параметры, значения внешних параметров и коэффициенты искажения. Чтобы оценить параметры камеры, у вас должны быть 3-D мировые точки и их соответствующие 2D точки изображений. Можно получить эти соответствия с помощью повторных изображений калибровочного шаблона, таких как шахматная доска. Используя соответствия, можно решить для параметров камеры. После того, как вы калибруете камеру, чтобы оценить точность предполагаемых параметров, вы можете:
Постройте относительные местоположения камеры и калибровочного шаблона
Вычислите ошибки перепроекции.
Вычислите ошибки расчета параметра.
Используйте Camera Calibrator, чтобы выполнить калибровку фотоаппарата и оценить точность предполагаемых параметров.
Модели камеры
Computer Vision Toolbox™ содержит калибровочные алгоритмы для модели камеры с точечной диафрагмой и модели fisheye-камеры. Можно использовать модель подозрительного взгляда с камерами до поля зрения (FOV) 195 градусов.
Калибровочный алгоритм крошечного отверстия основан на модели, предложенной Жан-Ивом Буге [3]. Модель включает, модель [1] камеры с точечной диафрагмой и искажение объектива [2].The модель камеры с точечной диафрагмой не составляет искажение объектива, потому что идеальная камера с точечной диафрагмой не имеет линзы. Чтобы точно представлять действительную камеру, полная модель камеры, используемая алгоритмом, включает радиальное и тангенциальное искажение объектива.
Из-за экстремального искажения линза подозрительного взгляда производит, модель крошечного отверстия не может смоделировать fisheye-камеру. Для получения дополнительной информации на калибровке фотоаппарата с помощью модели подозрительного взгляда, смотрите Калибровочные Основы Подозрительного взгляда.
Модель камеры с точечной диафрагмой
Камера с точечной диафрагмой является простой камерой без линзы и с одной маленькой апертурой. Световые лучи проходят через апертуру и проецируют перевернутое изображение на противоположной стороне камеры. Думайте о виртуальной плоскости изображения, как являющейся перед камерой и содержащей вертикальное изображение сцены.
Параметры камеры с точечной диафрагмой представлены в 4 3, матрица вызвала camera matrix. Эта матрица сопоставляет 3-D мировую сцену в плоскость изображения. Калибровочный алгоритм вычисляет матрицу камеры использование внешних и внутренних параметров. Внешние параметры представляют местоположение камеры в 3-D сцене. Внутренние параметры представляют оптическое центральное и фокусное расстояние камеры.
Мировые точки преобразовываются к координатам камеры с помощью параметров значений внешних параметров. Координаты камеры сопоставлены в плоскость изображения с помощью параметров внутренних параметров.
Параметры калибровки фотоаппарата
Калибровочный алгоритм вычисляет матрицу камеры использование внешних и внутренних параметров. Внешние параметры представляют твердое преобразование от 3-D системы мировой координаты до системы координат 3-D камеры. Внутренние параметры представляют проективное преобразование от координат 3-D камеры в 2D координаты изображений.
Внешние параметры
Внешние параметры состоят из вращения, R, и перевода, t. Источник системы координат камеры в ее оптическом центре, и ее x- и ось y- задают плоскость изображения.
Внутренние параметры
Внутренние параметры включают фокусное расстояние, оптический центр, также известный как principal point и скошенный коэффициент. Матрица внутреннего параметра камеры, K, задана как:
[ f x 0 0 s f y 0 c x c y 1 ]
Пиксельный скос задан как:
[ c x c y ] — Оптический центр (основная точка), в пикселях. |
( f x , f y ) — Фокусное расстояние в пикселях. f x = F / p x f y = F / p y F — Фокусное расстояние в мировых единицах измерения, обычно описанных в миллиметрах. ( p x , p y ) — Размер пикселя в мировых единицах измерения. |
s — Скошенный коэффициент, который является ненулевым, если оси изображений не перпендикулярны. s = f x tan α |
Искажение при закрытых дверях калибровка
Матрица камеры не составляет искажение объектива, потому что идеальная камера с точечной диафрагмой не имеет линзы. Чтобы точно представлять действительную камеру, модель камеры включает радиальное и тангенциальное искажение объектива.
Радиальное искажение
Радиальное искажение происходит, когда световые лучи изгибаются более близкий ребра линзы, чем они делают в ее оптическом центре. Чем меньший линза, тем больше искажение.
Радиальные коэффициенты искажения моделируют этот тип искажения. Искаженные точки обозначаются как (искаженный x, искаженный y):
x, y Неискаженные пиксельные местоположения. x и y находятся в нормированных координатах изображений. Нормированные координаты изображений вычисляются от пиксельных координат путем перевода в оптический центр и деления на фокусное расстояние в пикселях. Таким образом x и y являются безразмерными.
k 1, k 2, и k 3 — Радиальные коэффициенты искажения линзы.
Как правило, два коэффициента достаточны для калибровки. Для серьезного искажения, такой как в широкоугольных объективах, можно выбрать три коэффициента, чтобы включать k 3.
Тангенциальное искажение
Тангенциальное искажение происходит, когда линза и плоскость изображения не параллельны. Тангенциальные коэффициенты искажения моделируют этот тип искажения.
Искаженные точки обозначаются как (искаженный x, искаженный y):
x, y Неискаженные пиксельные местоположения. x и y находятся в нормированных координатах изображений. Нормированные координаты изображений вычисляются от пиксельных координат путем перевода в оптический центр и деления на фокусное расстояние в пикселях. Таким образом x и y являются безразмерными.
p 1 и p 2 — Тангенциальные коэффициенты искажения линзы.
Ссылки
[1] Чжан, Z. “Гибкий Новый техник для Калибровки фотоаппарата”. Транзакции IEEE согласно Анализу Шаблона и Искусственному интеллекту. Издание 22, № 11, 2000, стр 1330–1334.
[2] Heikkila, J. и О. Сильвен. “Процедура калибровки фотоаппарата с четырьмя шагами с неявной коррекцией изображений”. Международная конференция IEEE по вопросам распознавания 1997 компьютерного зрения и шаблона.
[3] Bouguet, J. Y. “Тулбокс калибровки фотоаппарата для MATLAB”. Вычислительное видение в Калифорнийском технологическом институте. Тулбокс калибровки фотоаппарата для MATLAB
[4] Брадский, G. и А. Кэехлер. Изучение OpenCV: компьютерное зрение с библиотекой OpenCV. Севастополь, CA: О’Райли, 2008.
Источник