Что выбрать: MOSFET или IGBT -инвертор?
Не нужно на 100% разбираться в премудростях электротехники, чтобы высказать мнение по теме. Заголовок «MOSFET или IGBT?» напоминает старое соревнование форматов: VHS или DVD? Кто же победит? И пусть скажут, сравнение не корректное. Но, DVD формат великолепный, качество звука и изображения замечательные, а мы все так привыкли к старому доброму VHS…
Для тех, кто не понимает о чем идет речь, поясним. На сегодняшний день существует две технологии изготовления сварочных инверторов,
- первая основана на базе полевых транзисторов с изолированным затвором (MOSFET) и пользуется успехом на правах «старого, работающего и проверенного варианта»
- вторая — на базе биполярных транзисторов с изолированным затвором (IGBT). Это инновационная технология, новое поколение и тому подобное.
Возникает закономерный вопрос: что же выбрать старое, проверенное временем, или относительно новое, но более технологичное?
Попробуем привести пару доводов и, как говорится, ближе к «телу»…
Что не говори, а IGBT занимают меньший объем и при этом позволяют получить более высокую силу тока на выходе, они меньше нагреваются. Разве это не аргумент в пользу IGBT? Возражения же заключаются в том, что схемы IGBT покамест не идеально продуманы и т.д., разработчикам не было времени на это и они звучат «натянуто».
Конечно, если покупать инвертор для бытовой сварки, то не так уж важно, какие у него транзисторы внутри. Вообще не важно, что внутри. Главное, чтобы электрод поджигался нормально, дуга не прыгала туда-сюда, чтобы электрод не залипал. Так же, желательно, чтобы инвертор работал при пониженном напряжении в сети, не боялся забросов напряжения, чтобы желтая лампа перегрева редко зажигалась.
Если речь идет о небольших объемах бытовых работ, то практически любой инвертор в этом станет вашим надежным другом и товарищем, та же Ресанта или Сварог, или Фубаг, или отечественный Форсаж и т.д. и т.п.
Но что, если нужен профессиональный аппарат, когда варить придется целый день. Наше мнение, здесь лучше IGBT. Почему? Возьмем для примера сварочный аппарат РICO 180— это же прелесть, а не сварочник! Приведем в качестве примера его систему охлаждения. Она интеллектуальная и включается только тогда, когда транзисторы нагреваются. А в РICO даже после 15 и более минут сварки на небольших токах вентилятор не шелохнется. Это значит, что схемы холодные, корпус аппарата холодный. И все это IGBT, они греются менее интенсивно, чем MOSFET и на более высоких токах. Ну и что мне с этого, скажете Вы? Очень просто. Чем меньше работает вентилятор, тем лучше! Особенно если Вы работаете в запыленных помещениях. Основной враг инвертора — это пыль. Она является основной причиной досрочного выхода инверторов из строя. Соответственно, чем меньше пыли затягивается в сварочный аппарат, тем лучше! А это значит, чем дольше не включаются кулеры, тем лучше! Получить это можно только с IGBT.
Несомненный плюс так же состоит в том, что достигается высокая мощность при еще более малом весе. Каждый грамм играет роль, если приходится целый день носить инвертор на плече.
Минус в свое время был в дороговизне ремонта IGBT и невозможности подчас найти запчасти. Но время идет, техника совершенствуется, а то, что было раньше дорогим и недоступным, становится обыденным и легкозаменяемым! Так что наше мнение, будущее за новыми технологиями. А Вы как думаете? Стоит с этим согласиться?
Сегодня уже ни для кого не секрет кто выиграл в битве «VHS или DVD».
Источник
Инверторы: принцип работы устройств и преимущества
Содержание:
Впервые источник питания для сварочного аппарата на основе инверторной технологии появился в 70-х годах прошлого века, и за прошедшее время он был значительно усовершенствован: появился электронный блок, значительно снизилась цена и существенно увеличилась надежность.
На сегодняшний день инверторный сварочный аппарат является самым совершенным среди сварочных «собратьев». В чем же заключается особенность этого источника питания? Рассмотрим подробнее далее.
Устройство и принцип работы инверторов
Вся суть инверторной технологии заключается в выпрямлении сетевого переменного тока в постоянный сварочный ток с промежуточным изменением его частоты. Как же происходит весь процесс преобразования? Рассмотрим поэтапно, в какой узел попадает ток и куда следует далее:
- Выпрямитель — его роль играет обычный диод. Именно в этот блок сначала поступает переменный ток с промышленной частотой 50 Гц.
- Фильтр — состоит из дросселя и конденсатора. Выпрямленный ток попадает в фильтр и сглаживается. В результате образуется постоянный ток, который инвертором преобразуется в переменный с частотой 20-50 кГц. На сегодняшний день существуют технологии, с помощью которых можно получить ток частотой 100 кГц.
- Силовой трансформатор снижает высокочастотное переменное напряжение до 25-40В и повышает значение тока до необходимого для сварки. Получается, что требуемой силы сварочный ток достигает благодаря преобразованию высокочастотных токов. Такое многоступенчатое преобразование тока и позволяет использовать трансформатор малых размеров. Приведем пример для сравнения: чтобы получить ток 160 А, в обычном сварочном аппарате нужно установить медный трансформатор, который весит почти 18 кг. В инвертор же нужно поставить трансформатор весом всего 250 грамм. Разница просто колоссальная!
- Высокочастотный выпрямитель выравнивает переменный ток, который далее проходит высокочастотный фильтр, и в итоге мы получаем постоянный сварочный ток.
Все эти процессы преобразования энергии тока контролирует микропроцессорный блок управления, который и является самой дорогой частью инверторного сварочного аппарата.
IGBT или MOSFET?
Сегодня инверторные сварочные аппараты производятся по двум разным полупроводниковым технологиями:
- IGBT
- MOSFET
Основное различие между ними — в транзисторах, отличающихся током коммутации. Транзисторы MOSFET, по сравнению с IGBT, имеют большие вес и габариты и стоят дешевле, однако их необходимо, соответственно, и большее количество.
Для наглядного сравнения рассмотрим устройство инвертора с силой тока в 200 А. В том случае, если он будет изготовлен по технологии MOSFET, то он будет содержать около 24 транзисторов MOSFET, а элементов IGBT потребуется в несколько раз меньше — около 10.
Другим немаловажным преимуществом технологии IGBT является возможность работы на более высоких частотах (60-85 кГц), что уменьшает вес инвертора.
Значение температуры, при которой включается термозащита, у IGBT также намного выше (она составляет около 90 °С против 60 °С у MOSFET), а это напрямую влияет на продолжительность непрерывной работы аппарата.
Рассмотрим два инвертора, выполненные по этим разным технологиям, со стороны ремонтопригодности. Оба имеют преимущества: IGBT-инвертор имеет меньшее количество элементов и транзисторов, которые в случае выхода из строя нужно будет менять, а транзисторы в MOSFET-инверторе имеют большие габариты и более простое расположение, что также облегчает их замену.
Три полезные функции
При сварке одна из самых непростых задач — это необходимость держать электрод на расстоянии нескольких миллиметров от поверхности. Если Вы все же коснетесь им металла, то электрод сразу прилипнет к детали и во вторичной обмотке произойдет короткое замыкание. Если его с силой не оторвать, то обычный трансформатор перегреется и сразу включится тепловая защита (а если ее нет, то сгорит обмотка).
Такие процессы часто происходят в обычных сварочных аппаратах, однако инвертор упрощает работу: благодаря функции antistick при малейшем касании поверхности детали моментально снижается сила тока, что исключает прилипание электрода к металлу. И любой пользователь без проблем оторвет его от детали.
С зажиганием дуги тоже не возникнет никаких проблем — в момент инициации автоматически повышается значение сварочного тока (функция HOT START).
В случае, если Вы слишком близко поднесли электрод к заготовке, то с помощью функции arc force повышается значение силы тока. В результате деталь и электрод подплавляются, что позволяет восстановить расстояние между ними, исключая прилипание.
Достоинства инверторов
- Низкий вес, малые габариты — применение в инверторных сварочных аппаратах малогабаритных высокочастотных трансформаторов позволило существенно снизить габариты и вес инверторных моделей.
- Защита от перепадов напряжения — такие аппараты практически не зависят от перепадов сетевого напряжения. Они снабжаются системами защиты от перегрузок, резкого падения напряжения.
- Легкость использования — большинство инверторов обеспечиваются дополнительными функциями antistick, hot arc и arc force. Это делает возможным их эксплуатацию даже новичками, без специальной подготовки.
- Сварка короткой и длиной дугой – обеспечивает качественный шов на всех видах металлов.
Среди недостатков инверторных сварочных агрегатов можно выделить:
- Высокую цену по сравнению с другими сварочными аппаратами. Однако, она с каждым годом снижается, ведь производством инверторов занимаются все мировые компании по выпуску сварочного оборудования.
- Уязвимость микропроцессорной платы управления, которая очень чувствительна к высокому содержанию пыли в воздухе. Но решение этой проблемы найдено довольно простое — нужно периодически продувать аппарат сжатым воздухом от компрессора.
Применение инверторной технологии при производстве сварочных аппаратов стало настоящим прорывом, позволив значительно расширить функциональные возможности «сварочников». На нашем сайте вы найдете широкий ассортимент инверторных сварочных аппаратов, а также расходных материалов и комплектующих деталей. Для получения более подробной информации о конкретных моделях устройств или по оформлению покупки, пожалуйста, звоните по бесплатному номеру телефона 8-800-333-83-28.
Источник
MOSFET или IGBT?
Сначала рассмотрим различия в целом. В настоящий момент все производители инверторов (ММА) выпускаются по двум полупроводниковым технологиям IGBT и MOSFET. Не буду вдаваться в подробности, скажу только то, что в схемотехнике этих аппаратов используются разные полупроводниковые транзисторы IGBT и MOSFET. Основое различие между этими транзисторами — различный ток коммутации. Большим током обладают транзисторы IGBT.
Для изготовления стандартного инвертора понадобится 2–4 IGBT транзистора (в зависимости от рабочего цикла), a MOSFET — 10–12, т. к. они не могут пропускать через себя большие токи, поэтому их приходится делить на такое большое количество транзисторов. Вот собственно в чем и отличие.
Тонкость в том, что транзисторы очень сильно греются и их необходимо установить на мощные алюминиевые радиаторы. Чем больше радиатор, тем больше съем тепла с него, а, следовательно, его охлаждающая способность. Чем больше транзисторов, тем больше радиаторов охлаждения необходимо установить, следовательно, увеличиваются габариты, вес и т. д. MOSFET здесь однозначно проигрывает.
На практике схемотехника MOSFET не позволяет создать аппарат на одной плате: т.е аппараты, которые сейчас есть в продаже, собраны в основном на трех платах. IGBT аппараты всегда идут на одной плате.
Основные недостатки MOSFET
- соединение трех плат;
- худший теплообмен;
- каскадный выход транзисторов из строя при неисправности одного транзистора;
- меньший КПД (относительно IGBT).
Проще говоря, IGBT более современная технология, чем MOSFET.
Недостатки MOSFET
Что лучше MOSFET или IGBT?
Некоторые компании идут в ногу со временем и при производстве сварочных инверторов используют IGBT транзисторы американской фирмы «Fairchaild», частота переключения которых составляет 50 кГц, т. е. 50000 раз в секунду. IGBT технологию выбрали неспроста, ведь рабочий диапазон температур у них с сохранением параметров гораздо больше, чем у MOSFET, т. е. при нагреве у MOSFETa падают качественные характеристики.
В конструкции САИ (Ресанта) используется одна маленькая плата, которая устанавливается вертикально, а также 4 IGBT транзистора (работают обособленно друг от друга, т. е. не выгорают все, если выгорел один как у MOSFET) и 6 диодов-выпрямителей (а не 12 как у MOSFET), соответственно отказоустойчивость ниже. Это ещё один «плюс» IGBT.
Можно напомнить покупателю о том, что в современных сварочных инверторов используется только 4 обособленных транзистора, а не 12 каскаднозависимых как у MOSFET. Всякое в жизни бывает, но, чтобы не произошло в случае выхода из строя одного транзистора (если не гарантийный случай), замена покупателю обойдется где-то в районе 400 р., а не 12×110 р. = 1320 р. Думаю, что разница приличная.
Как отличить: Визуально аппараты IGBT в большинстве своём отличаются от MOSFET вертикальным расположением силовых разъёмов, т. к. плата одна и обычно устанавливается вертикально. У MOSFET аппаратов выходы обычно расположены горизонтально, т. к. платы в конструкции горизонтально закреплены. Нельзя точно утверждать, что это верно на 100%. Точнее можно сказать, сняв кожух с аппарата.
Многие компании пытаются «выиграть баллы» на транзисторах. Так, например, компания «Aiken» в настоящий момент выпустила на рынок аппараты (по технологии MOSFET) с наклейками на боковых панелях «Используются транзисторы TOSHIBA» а также «Используются транзисторы Mitsubishi». Пытаются выползти на громких и знакомых брендах. На практике это не подтвердилось. Так на крупнейшей Международной инструментальной выставке России Moscow International Tool Expo (MITEX-2011), которая проходила в ноябре 2011г. в «Экспоцентре» (г. Москва), я попросил представителей стенда данной компании разобрать их САИ с наклейкой «Используются транзисторы Mitsubishi» и продемонстрировать данные транзисторы. В итоге сварочные инверторы разобрали, но данных транзисторов не обнаружили. Сами сотрудники компании «Aiken» были в шоке, обнаружив безымянные транзисторы.
Источник