- Символьные обозначения
- Геометрия 7 класс. Точка, прямая и отрезок
- Как обозначить прямую
- Задача № 1 из учебника Атанасян 7-9 класс
- Решение задачи
- Как обозначается пересечение прямых
- Взаимное расположение прямой и точек
- Сколько общих точек имеют две прямые
- Первый случай расположения прямых
- Второй случай расположения прямых
- Третий случай расположения прямых
- Задача № 3 из учебника Атанасян 7-9 класс
- Решение задачи
- Что такое отрезок
Символьные обозначения
Для обозначения геометрических фигур и их проекций, для отображения отношения между геометрическими фигурами, а также для краткости записей геометрических предложений, алгоритмов решения задач и доказательства теорем используются символьные обозначения.
Символьные обозначения, все их многообразие, может быть подразделено на две группы: — Первая группа — обозначения геометрических фигур и отношения между ними; — Вторая группа — обозначения логических операций, составляющая синтаксическую основу геометрического языка.
Символьные обозначения — Первая группа
Символы, обозначающие геометрические фигуры и отношения между ними
Обозначения геометрических фигур: Φ — геометрическая фигура; A, B, C, D, . L, M, N, . — точки расположенные в пространстве; 1, 2, 3, 4, . 12, 13, 14, . — точки расположенные в пространстве; a, b, c, d, . l, m, n, . — линии, произвольно расположенные по отношению к плоскостям проекций; h, υ(f), ω — линии уровня (горизонталь, фронталь, профильная прямая соответственно); (AB) — прямая проходящая через точки A и B; [AB) — луч с началом в точке A; [AB] — отрезок прямой, ограниченный точками A и B; α, β, γ, δ, . ζ, η, θ — поверхность; ∠ABC — угол с вершиной в точке B; ∠α, ∠β, ∠γ — угол α, угол β, угол γ соответственно; |AB| — расстояние от точки A до точки B (длина отрезка AB); |Aa| — расстояние от точки A до линии a; |Aα| — расстояние от точки A до поверхности α; |ab| — расстояние между прямыми a и b; |αβ| — расстояние между поверхностями α и β; H, V, W — координатные плоскости проекций (именуемые как горизонтальная, фронтальная, профильная соответственно); П1, П2, П3 — координатные плоскости проекций (именуемые как горизонтальная, фронтальная, профильная соответственно); x, y, z — координатные оси проекций (ось абсцисс, ось ординат, ось аппликат); ko — постоянная прямая эпюра Монжа; O — точка пересечения осей проекций; `, «, `» — верхние индексы для проекций точек, прямых, углов, фигур, поверхностей на плоскости проекций (именуемые как горизонтальную, фронтальную, профильную соответственно); 1, 2, 3 — верхние индексы для проекций точек, прямых, углов, фигур, поверхностей на плоскости проекций (именуемые как горизонтальную, фронтальную, профильную соответственно); αH, αV, αW — след поверхности оставляемый на горизонтальной, на фронтальной, на профильной плоскости проекций соответственно; αH, αV, αW — след поверхности α оставляемый на горизонтальной, на фронтальной, на профильной плоскости проекций соответственно; aH, aV, aW — след прямой a оставляемый на горизонтальной, на фронтальной, на профильной плоскости проекций соответственно;
Проекции точек, линий, поверхностей любой геометрической фигуры обозначаются теми же буквами (или цифрами), что и оригинал, с добавлением верхнего индекса A`, A», A`» или 1`, 1″, 1`», соответствующего плоскости проекции, на которой они получены: A`, B`, C`, D`, . L`, M`, N`, . — горизонтальные проекции точек; A», B», C», D», . L», M», N», . — фронтальные проекции точек; A`», B`», C`», D`», . L`», M`», N`», . — профильные проекции точек; a`, b`, c`, d`, . l`, m`, n`, . — горизонтальные проекции линий; a», b», c», d», . l», m», n», . — фронтальные проекции линий; a`», b`», c`», d`», . l`», m`», n`», . — профильные проекции линий; α`, β`, γ`, δ`, . ζ`, η`, θ`, . — горизонтальные проекции поверхностей; α», β», γ», δ», . ζ», η», θ», . — фронтальные проекции поверхностей; α`», β`», γ`», δ`», . ζ`», η`», θ`», . — профильные проекции поверхностей;
Символы взаиморасположения геометрических объектов
Обозначение | Смысловое значение | Пример символической записи |
(. ) | способ задания геометрического объекта в пространстве и на комплексном чертеже | А(А`, А») – точка А задана на комплексном чертеже горизонтальной и фронтальной проекциями; α(А, b) – плоскость α задана прямой b и точкой А. |
∈ ⊂ , ⊃ | принадлежность | А∈l – точка А принадлежит прямой l; l⊂α – прямая l лежит в плоскости α |
≡ | совпадение | А`≡ В` – горизонтальные проекции точек А и В совпадают. |
‖ , // | параллельность | a // b – прямые a и b параллельны. |
⊥ | перпендикулярность | c⊥d – прямые c и d перпендикулярны. |
∸ | скрещивание | m ∸ n – прямые m и n скрещивающиеся. |
∩ | пересечение | k ∩ l – прямые k и l пересекаются. |
∾ | подобие | ΔАВС ΔDEF – треугольники ABC и DEF подобны. |
≅ | конгруэнтность | ΔАВС ≅ /АВ/ = /CD/ – отрезки АВ и CD равны. |
= | равенство, результат действия | /АВ/ = /CD/ – длины отрезков AB и CD равны; k ∩ l = M — прямые k и l пересекаются в точке M. |
/ | отрицание | А ∉ l – точка А не принадлежит прямой l. |
→ ← | отображение, преобразование | V/H → V1/H– система ортогональных плоскостей V/H преобразуется в систему плоскостей V1/H |
Символьные обозначения — Вторая группа
Источник
Геометрия 7 класс.
Точка, прямая и отрезок
Казалось бы, что таким простым понятиям, как «точка» или «прямая», которые мы повседневно используем в жизни, крайне просто дать определения. Но на практике оказалось, что это не так.
Существует множество определений, которые давали знаменитые математики терминам «точка» и «прямая». За многие века ученые так и не пришли к единому определению.
Мы не будем приводить все определения точки и прямой. Остановимся на объяснениях, которые, на наш взгляд, наиболее простым образом их описывают.
Точка — элементарная фигура, не имеющая частей.
Прямая состоит из множества точек и простирается бесконечно в обе стороны.
На рисунке изображена прямая a и точки D, F, G и H . Точки F и G лежат на прямой a . Точки D и H не лежат на прямой a .
В тексте точку обозначают символом « (·)» . Принадлежность и непринадлежность точки прямой обозначают символами « ∈ » и « ∉ ». Знак принадлежности можно запомнить как зеркальное отображение буквы « Э » или как знак евро « € » .
То есть выражаясь геометрическими обозначениями, информацию о расположении прямой и точек на рисунке выше можно записать так:
- (·)F ∈ a — точка F принадлежит прямой a (другими словами, точка F лежит на прямой a );
- (·)G ∈ a — точка G принадлежит прямой a ;
- (·)D ∉ a — точка D не принадлежит прямой a (другими словами, точка D не лежит на прямой a );
- (·)H ∉ a — точка H не принадлежит прямой a .
Как обозначить прямую
Прямую обычно обозначают одной маленькой латинской буквой.
Прямую, на которой отмечены две точки, иногда обозначают по названиям этих точек большими латинскими точками.
- На рисунке изображены:
- Прямая a
- Прямая f
- Прямая CH
- Прямая DK
Точки D, E и F — лежат на одной прямой, поэтому: прямая DE , прямая EF и прямая DF — это три разных имени одной и той же прямой.
Задача № 1 из учебника Атанасян 7-9 класс
Проведите прямую, обозначьте её буквой a и отметьте точки A и B , лежащие на этой прямой, и точки P, Q и R , не лежащие на ней. Опишите взаимное расположение точек A, B, P, Q, R и прямой a , используя символы ∈ и ∉ .
Решение задачи
Обозначим её буквой a .
Отметим точки (·)A и (·)B , лежащие на прямой a .
Отметим точки (·)P, (·)Q и (·)R , не лежащие на прямой a .
Опишем взаимное расположение точек и прямой.
Как обозначается пересечение прямых
На рисунке прямые a и b не пересекаются . Прямые b и c пересекаются .
Хотя на чертеже не видно, но прямые a и c тоже пересекаются (это становится ясно, если мысленно продолжить вниз прямые a и с ).
В тексте пересечение прямых обозначают символом ∩ . Информацию на рисунке выше можно записать следующим образом:
- b ∩ c — прямые b и с пересекаются;
- a ∩ c — прямые a и с пересекаются.
Прямые e и g имеют общую точку M . Другими словами, прямые пересекаются в точке M . Геометрическими обозначениями пересечение прямых в точке записывается так:
e ∩ g = (·)M
Прямые e и f не имеют общей точки — т.е. они не пересекаются.
Взаимное расположение прямой и точек
Через любые две точки можно провести прямую, и притом только одну .
Через одну точку (·)A можно провести сколько угодно прямых.
Через две точки (·)A и (·)B можно провести только одну прямую.
Сколько общих точек имеют две прямые
Две прямые либо имеют только одну общую точку, либо не имеют общих точек.
Докажем утверждение выше. Для этого рассмотрим все возможные случаи расположения двух прямых.
Первый случай расположения прямых
На рисунке выше мы видим, что у прямых f и e нет общих точек, т.к. эти прямые не пересекаются.
Второй случай расположения прямых
Возможен вариант, что прямые f и e пересекаются и, значит, имеют одну общую точку (·)M .
Третий случай расположения прямых
Предположим, что прямые f и e имеют две или больше общих точек. Например, точки (·)A и (·)B .
Но мы знаем, что через две точки можно провести только одну прямую. Значит, прямые f и e совпадают и наше предположение, что у двух прямых может быть две или более общих точек неверно .
Вывод: две прямые либо имеют только одну общую точку, либо не имеют общих точек.
Задача № 3 из учебника Атанасян 7-9 класс
Проведите три прямые так, чтобы каждые две из них пересекались. Обозначьте все точки пересечения этих прямых. Сколько получилось точек? Рассмотрите все возможные случаи.
Решение задачи
Проведём две прямые a и b так, чтобы эти две прямые пересекались, и обозначим точку пересечения.
Как мы видим, точка пересечения только одна. Мы можем провести третью прямую так, чтобы она тоже проходила через эту точку пересечения.
Теперь прямая a пересекается с прямой b , прямая b пересекается с прямой c и прямая c пересекается с прямой a .
В этом случае у нас только одна точка пересечения всех прямых — точка (·)D .
Но возможен и другой вариант. Мы можем провести третью прямую c так, чтобы она не проходила через точку (·)D . Тогда получится три точки пересечения — (·)D, (·)E и (·)F .
Прямая a пересекается с прямой b в точке (·)D , прямая b пересекается с прямой c в точке (·)F и прямая c пересекается с прямой a в точке (·)E . Условие задачи выполнено.
Мы убедились, что возможны оба варианта. Поэтому в ответе запишем их оба.
Ответ: точек пересечения получается одна или три.
Что такое отрезок
Отрезок — часть прямой, ограниченная двумя точками.
Две точки, ограничивающие отрезок, называются концами отрезка. У отрезка на рисунке выше концы называются S и T .
Сам отрезок можно назвать ST или TS . Когда изображают отрезок, оставшиеся от прямой хвосты можно не рисовать.
В отличии от прямой любой отрезок можно измерить. Т.е. каждый отрезок имеет длину.
Источник