Фракталы мандельброта что это значит

Фракталы мандельброта что это значит

Еще сам Бенуа Мандельброт выдвинул собственную теорию о бирже и ценах в собственной книге — «Непослушные рынки. Фрактальная революция в финансах». Мне посчастливилось прочитать ее и все, что есть на эту тему в русскоязычном сегменте.

К большому сожалению, такая литература далека от реального трейдинга и экспертности, а скорее напоминает обывательский взгляд ученого на то, что он впервые видит. Математик убежден, что заработать на спекуляциях практически невозможно. При этом выводы он делает без исследований, даже до конца не ознакомившись с индустрией и теми, кто успешно в ней живет многие годы.

Мне запомнились следующие его тезисы:

      • технический анализ — «золото дураков» и развод;

      • фундаментальный анализ бесполезен, поскольку рынок уже учел все события в цене;

    • волны Эллиота слишком субъективны и не работают.

Мельком ученый прошелся по профессиональным управляющим и проп-трейдерам. Везде он увидел только чутье и то, что не поддается изучению, списывая все на удачу и прочие обстоятельства. Единственный способ получить доход по его мнению — арбитраж между рынками. Логично, ведь там есть практически гарантированный профит и отрицать очевидное нельзя, но прибыль при таком стиле торговли слишком низкая.

В свое время я почти ему поверил и даже пытался забыть о трейдинге. Собственно, как не прислушаться к словам одного из умнейших людей в мире? Тем не менее, есть одна нестыковка в его суждениях — существуют целые компании, где сидят такие «везунчики» и торгуют интрадей и скальпинг, зарабатывая приличные деньги. Кроме того, есть алгоритмический трейдинг, который тестируется на выборках в десятки и сотни тысяч сделок. Если уж это не статистическая закономерность, то тогда что?

Читайте также:  Что значит существительное со значением места

Фотография Бенуа Мандельброта

Я думаю, что Мандельброту не слишком интересны финансовые рынки, раз он отмахнулся от них книжкой в научно-популярном стиле. Никаких исследований и доказательств своим выводам он не представил.

Все это неудивительно, ведь ученые-математики часто не обращают внимание на психологию и эмоциональную составляющую. А на рынке царят жадность, надежда и страх. Здесь нужно уметь «читать» настрой и поведение толпы, не забывая о своих собственных слабостях. Прав Мандельброт или нет, не важно, потому что были и будут проп-компании, крупные инвестиционные холдинги, где проходит многомиллиардный поток сделок.

Источник

Почему множество Мандельброта устроено так, как оно устроено

Созерцание фракталов завораживает, особенно это относится к предмету данной статьи, который демонстрирует вдобавок ко всему еще и изрядное разнообразие. Впрочем, не менее интересно попытаться разобраться, откуда что берётся, как из одного, в сущности, (пусть и комплексного) числа рождается всё это великолепие.
Если любопытно, добро пожаловать под кат.

Это первая статья из цикла:

  1. свойства возведения в квадрат в комплексной плоскости (вы здесь),
  2. свойства центральной кардиоиды.
  3. хвост — отрицательная часть вещественной оси.

О чём вообще речь

Множество Мандельбро́та — это «множество таких точек C на комплексной плоскости, для которых рекуррентное соотношение при задаёт ограниченную последовательность» (вики).

Иными словами, на каждом шаге число возводится в квадрат и к нему добавляется константа. Начальное значение всегда (0, 0i), варьируется именно константа. Если за определенное число шагов последовательность осталась в заданных пределах, то значение константы принадлежит множеству. Выглядит это так:


Фиг.1 Множество Мандельброта в координатах — реальная и мнимая части константы. Отсюда.

Чаще действуют по другому — фиксируют радиус и для каждого значения константы подсчитывают число итераций, за которое последовательность до него добралась. Это позволяет раскрасить пограничные области множества, не принадлежащие, впрочем, самому множеству.

Вот так, например:


Фиг.2 Типичная цветовая схема

И откуда же всё это берется?

Нельзя просто так вот взять и ответить на этот вопрос.

Начнём с малого, изучим простую казалось бы операцию — возведение в квадрат.

Основа,

Итак, что же это за возведение в квадрат комплексного числа, ведь именно оно лежит в основе наблюдаемой магии?

Комплексные числа будем рассматривать как двумерный вектор из реальной и мнимой части (что бы это ни означало) либо в полярных координатах как пару длина — угол.

Формула Муавра утверждает, что возведение комплексного числа в квадрат приводит к возведению длины в квадрат, угол при этом удваивается.


Фиг.3 Стартуем с угла 0.001 рад

Вот первые 12 итераций возведения в квадрат комплексного числа с длиной 1 и углом — 0.001 рад, где угол отсчитывается от действительной единицы против часовой стрелки. Когда угол превышает 2π, используется остаток от деления. Отрицательные углы тоже в деле.

Какие особенности есть у последовательности ?

  1. Поскольку значение длины на каждой итерации возводится в квадрат, любое комплексное число с длиной меньше единицы стремится в центр координат.
  2. Аналогично, любая последовательность со стартовой длиной больше единицы тут же стартует в бесконечность.
  3. Интерес представляют лишь точки, расположенные на единичной окружности.
  4. Точка (1, 0i) стационарная, угол равен 0 (или 2π), с неё последовательность не может уйти.
  5. Точка (-1, 0i) соответствует углу в π, на следующей итерации превращается в 2π и становится стационарной.
  6. Обобщим, точки с углом ± (n — целое неотрицательной число) также рано или поздно попадают в стационарную точку. Как и точки . Для отрицательных n — они уже там.
  7. Точки с углом (n — целое число, не являющееся степенью 2) образуют устойчивые циклы


Фиг.4 Последовательности для начальных углов в π/3, π/5, π/7, π/11

Забавно, циклы для π/n образуются по углам правильного n-угольника с одним из углов в стационарной точке (1,0i), но этот угол не посещается. Это проистекает из того, что, например, () не может породить 0, а только лишь числа от 1 до 12.

Но это всё простые делители. Попробуем что-нибудь непростое и нечётное.


Фиг.5 Последовательности для начальных углов в π/9, π/15, π/21.

Похоже, все рациональные делители образуют устойчивые циклы.

Точки со стартовыми углами в ±π/x (x — иррациональное число) не образуют циклов и заметают всю окружность.


Фиг.6 Последовательность с началом в 0.001 рад

Здесь показаны первые 500 и 5000 точек из уже знакомой последовательности, начинающейся с угла 0.001 радиана.

Отлично видно проявившуюся кардиоидо-подобную структуру. Происхождение её очевидно, если поделить единичный круг на 8 секторов


Фиг.7 Сектора

то в силу удвоения угла,
точки из сектора 1 могут попасть только в сектор 2 (или остаться в 1)
точки из сектора 2 могут попасть в сектора 3 и 4
точки из сектора 3 могут попасть в сектора 5 и 6
точки из сектора 4 могут попасть в сектора 7 и 8

К слову сказать, чтобы получить последовательность из 5000 адекватных значений, пришлось работать с точностью до 2000 значащих цифр. Фактически, каждая итерация последовательности приводит (грубо, за счет использования остатка от деления угла) к потере одного старшего разряда и подтягиванию одного разряда снизу, из “великого ничто”. Понятно, в “великом ничто” точность неограниченна, нам же приходится работать с конечными объемами данных.

Малые возмущения

Сейчас немного отойдём от чистого в сторону исходной задачи. На каждой итерации станем подмешивать константу. Правда, стартовая точка будет не в начале координат, а на единичной окружности. В результате можно работать с очень маленькими константами, ведь в этом случае не требуется вытаскивать последовательность на окружность для демонстрации нетривиального поведения.

Константа — это просто вектор из начала координат. В зависимости от того, где находится текущая итерация последовательности на единичной окружности, константа действует по-разному. Иные точки она “задувает” внутрь “кратера”, другие “сдувает” наружу. От баланса этих воздействий зависит, удержится ли последовательность в окрестностях единичной окружности или же безвозвратно уйдёт с дистанции.

Начнём со знакомой точки 0.001 радиана.


Фиг.8 Траектории при малых реальных отклонениях от 0.001 рад

Всего 58 итераций потребовалось, чтобы сойти с единичного круга и стремиться в бесконечность в случае константы (0, i*1e-15). При константе (0, i*-1e-15), последовательность ушла в 0 на 62 шагу.


Фиг.9 Окрестность 0 константы для стартовой точки 0.001 рад

Здесь показано, на какой итерации последовательность пересекла круг с радиусом 2 в зависимости от величины комплексной константы. Шаг . Отметим следующее:

  • Стартовая точка (длина 1, угол 0.001 рад) очень близка к горизонтальной оси. Соответственно, единичная окружность проходит через нее почти вертикально.
  • Первые несколько точек последовательности очень близки к стартовой, поэтому константа суммируется с ними одинаково.
  • Фактически, направление вектора константы однозначно определяет, в какую сторону соскользнёт последовательность.


Фиг.10 Окрестность 0 константы для стартовой точки 1⅓π рад

Здесь показан старт последовательности с точки с углом 1⅓π, это одна из точек цикла со стартом в π/3. Цикл состоит из двух точек — ⅔ и 1⅓π. Казалось бы, константа должна разнонаправленно действовать на эти точки, нивелируя саму себя. Но нет, никакой интриги и тут не видно. Куда направлен вектор константы по отношению к первой точке последовательности, туда и “сдувает” траекторию.

Пожалуй, на этом мы закончим с ,
в следующий раз займёмся центральной кардиоидой.

Сегодня мы уже встречались с кардиоидой, есть ли между ними связь или просто совпадение?
А может это сигнал «для тех кто понимает»?

Источник

Бенуа Мандельброт на TED: «Фракталы и искусство изломов»

Большое спасибо. Прошу прощения за то, что я сижу. Я очень старый человек.

Моя сегодняшняя тема в определённом смысле весьма особенная, потому что она очень древняя. Изломы – неотъемлемая часть человеческой жизни, они есть всегда. Об этом писали древние. Эта вещь по большей части нам неподконтрольна. И в каком-то смысле они кажутся крайней степенью усложнения – просто сплошной беспорядок.

Есть много видов беспорядка. Так вот, по чистой случайности много лет назад я стал заниматься этой формой усложнения, и, к моему полному удивлению, я нашёл признаки, и, должен сказать, весьма чёткие признаки порядка в изломах. А потому сегодня я хотел бы представить вам несколько примеров того, что это значит. Я предпочитаю слово «изломанность» слову «неровность» потому, что для того, кто изучал латынь, как и я в своей далёкой молодости, неровность – это противоположность ровности. Но ведь это не так.

Ровность есть противоположное к изломанности, потому что мир по большей части предстаёт нам как полный изломов.

Позвольте показать вам пару объектов. Некоторые их них созданы искусственно. Прочие – весьма реальны, в определённом смысле. Вот это – реальная вещь.

Это – цветная капуста. Отчего я показываю вам цветную капусту, это обыденное и древнее растение? Оттого, что, несмотря на свою обыденность и древность, оно сложное и простое. оно сложное и простое. К примеру, взвесить его не представляет труда. Вес имеет значение, если мы собираемся есть её. Но предположим, что мы собираемся измерить её поверхность. Это становится интересным. Вырезав острым ножом один из цветочков цветной капусты, и приглядевшись, нам видится цветная капуста целиком, только меньшего размера. Тогда можно вырезать снова, и снова, и снова, и снова, и снова… И получаются всё более маленькие образцы цветной капусты. Человеческий опыт показал что есть формы с таким интересным свойством, что каждая часть подобна целому, но меньшего размера. И что же человек извлёк из этого факта? Очень мало.

В связи с изучением этой проблемы я обнаружил нечто совершенно удивительное: изломанность можно измерить числом, скажем, 2,3 или 1,2, а иногда и намного большим. Однажды, один мой друг принёс фотографию и, полушутя, спросил: «Каков излом у этой кривой?» Я сказал: «Чуть меньше, чем полтора» Как оказалось, он был равен 1,48. Это не заняло у меня много времени, поскольку я так долго изучал эти вещи. Числа, о которых идёт речь, означают степень изломанности поверхности.

Сразу оговорюсь, что поверхности абсолютно искусственны и создавались на компьютере. Единственным исходным пунктом было число. Это число и есть изломанность. Изломанность слева есть результат копирования с нескольких ландшафтов. Справа – я сам задал более высокую изломанность. Если приглядеться, то спустя некоторое время можно распознать различия в этих двух случаях невооружённым глазом.

Человеку пришлось освоиться с понятием изломанности. Вот это очень изломано, а вот это, можно сказать, гладко, а вот это совершенно гладко. Немного вещей можно назвать очень гладкими. Зададимся теперь вопросом: какова поверхность цветной капусты? Можно её измерять и измерять и измерять… Чем точнее замер, тем больше поверхность, и так далее, вплоть до очень малых расстояний. Какова длина береговой линии у этих озёр? Чем точнее будет замер, тем длиннее получится. Понятие длины береговой линии, кажущееся столь очевидным оттого, что оно часто приводится, на самом деле абсолютно ошибочно: такой вещи просто нет. Тут должен быть другой подход.

И в чём польза от этого знания? Как ни удивительно, пользы немало. Начнём с того, что искусственные ландшафты, которые я, скажем так, изобрёл, постоянно используются в кинематографе. Нам видятся горы на расстоянии. Это могут быть горы, но это вполне могут быть просто идущие потоком формулы. Этого очень легко добиться. Раньше это требовало много времени, но сейчас это – сущий пустяк. Взгляните сюда. Это – настоящее лёгкое.

Лёгкое – очень странный объект. Нам всем прекрасно известно, что оно имеет какой-то вес. Известно также, что объём лёгкого весьма мал. А как насчёт площади лёгкого? Анатомы долго вели по этому поводу дискуссии. Считается, что у нормального мужчины площадь лёгкого равна площади одного баскетбольного мяча. Другие утверждают, что нет, пяти таких мячей. Расхождения колоссальны. Почему? Потому, что площадь лёгкого – весьма нечётко определённое понятие. Бронхи разветвляются и разветвляются всё глубже. А перестают они разветвляются не ввиду какого-то принципа, а из-за чисто физических условий, из-за слизи внутри лёгкого. Так образуется намного большее лёгкое: бронхи разветвляются всё глубже, пока просвет между ними примерно одинаковым и для кита, и для человека, и для небольшого грызуна.

Так в чём же от этого польза? Удивительно и даже поразительно, но анатомы плохо себе представляли структуру лёгкого вплоть до недавнего времени. Думаю, мои математические исследования, как ни удивительно, оказали большую помощь хирургам, занятым изучением лёгочных заболеваний, а также болезней печени, где имеются подобные ответвляющиеся системы с отсутствием понятной геометрии. Иными словами, мне пришлось создавать геометрию того, что не имеет своей геометрии. Обнаружилось удивительное качество: очень часто правила этой геометрии являются чрезвычайно краткими. Начинаешь с недлинных формул, применяешь их несколько раз, иногда повторно, снова и снова. Тот же повтор. И в конце концов получается нечто такое.

Это облако полностью искусственное, на 100%. Ну ладно, на 99,9%. Единственный естественный элемент тут – число, изломанность облака – это число взято у природы. Такая сложная вещь, как облако, такая неустойчивая, изменчивая, подчиняется простому правилу. Это простое правило не есть объяснение облачности. Но море облаков должно учитывать это правило. Не знаю, насколько совершенны эти старые фотографии. Я интенсивно занимался этим, но потом моё внимание было направлено на другие явления.

А вот ещё одна довольная любопытная вещь. Одно из революционных событий в истории математики, недостаточно оцененное многими, произошло примерно 130 лет назад, 145 лет назад. Математики начали создавать несуществующие формы. Среди математиков стало цениться, причём в совершенно невообразимой степени, умение человека создать то, чего в природе никогда не было. В частности, они смогли изобрести кривую, которая заполняет всю плоскость до последней точки. Кривая – это кривая, плоскость – это плоскость, и эти два понятия не стыкуются. Оказалось, что всё-таки стыкуются.

Человек по имени Пеано определил такие кривые, и они вызвали исключительный интерес. Они очень важны и вызывают интерес по большей части оттого, что произошло некое разделение математики на ту, что основана на реальности, и ту, что происходит от чистого разума. К сожалению, мне довелось доказать, что то, что стало известно благодаря усилиям чистого разума, на самом деле давно известно в другой форме. Вот тут у меня система ручейков в виде заполняющих плоскость кривых.

Само по себе, это – история. Это было в период с 1875 по 1925, удивительное время, когда математика готовилась оторваться от реального мира. Иллюстрацией разрыва, со времен моего детства и моих студенческих лет, разрыва между математикой и видимой реальностью служили определённые объекты. Однако мне удалось их переосмыслить, поставить с ног на голову, и с их помощью описать некоторые аспекты усложнённости природы.

В 1919-м году человек по имени Хаусдорф определил число, которое можно было считать математической шуткой. Но я обнаружил, что это число – хороший инструмент измерения изломанности. Когда я впервые рассказал об этом моим коллегам, они сказали: «Не занимайся глупостями. Это же нечто… » На самом деле я не занимался глупостями.

Великий художник Хокусай прекрасно знал это. В нижней части картины – водоросли. Хокусай не владел нужной математикой: её тогда просто не существовало. Кроме того, будучи японцем, он [в те времена] не имел контактов с Западом. Но художественное искусство с давних времен содержит фрактальные элементы. Об этом я могу говорить долго.

Эйфелева башня имеет фрактальные элементы. Я прочитал книгу Эйфеля о его башне – объём его понимания просто потрясающий.

Вот беспорядок внутри беспорядка. Броуновская петля. Однажды я решил, что прошла немалая часть моей профессиональной жизни, и столько разного занимало меня, что я решил, что пора бы испытать себя. Могу ли я исследовать объект, который все уже давно исследуют, и найти в нём что-либо радикально новое? Я стал изучать всё, что входит в категорию Броуновского движения. Пытался подойти с разных сторон, пробовал различные методы, и вернулся к тому, с чего начал. Тогда я предложил своему ассистенту: «Я тут ничего не вижу. Сможешь закрасить?» Он так и сделал, то есть заполнил все внутренности. «У меня получилось…»

Но я закричал: «Стоп! Стоп! Стоп! Понял: это – остров.» Удивительно. Броуновское движение имеет изломанность равную двум. Измеряю, получается 1,33. Измеряю заново и заново. Долгие замеры, большие Броуновские движения. Опять: 1,33. Тут же возникает математическая проблема: как это доказать? Моим друзьям для этого понадобилось 20 лет. У троих доказательства были неполные. Они соединили усилия, и вместе им удалось получить доказательство. В результате они удостоились известной [Филдсовской] медали для математиков. В целом, математики получили три медали [Филдса] за доказательство фактов, которые я видел, но не мог доказать.

Сейчас меня всюду спрашивают: «Как это всё началось? Как ваши занятия привели вас к таким необычным вещам?»

Что позволило мне быть одновременно инженером-механиком, географом, математиком и т.п.? Как это ни странно, но я начинал с изучения цен на фондовом рынке.

У меня возникла теория, и я написал об этом книги.

«Движения цен финансовых инструментов» Слева вам видны данные за длительный период, справа же, наверху, – данные согласно очень и очень модной теории. Это крайне просто и об этом можно очень быстро написать массу книг. (Смех) На эту тему есть тысячи книг. Теперь сравните с реальными движениями цен. И где же они? Дополнительные линии включают реальные движения цен, а также небольшую подделку с моей стороны. Основная идея там состояла в том, что надо уметь делать… Как это называется? …моделирование колебаний цен. Это прекрасно срабатывало 50 лет назад.

В течение 50 лет к моей идее относились с насмешкой, потому что можно было делать проще. Но сейчас, скажу я вам, ко мне стали прислушиваться. (Смех) Эти две кривые представляют средние значения. Синяя – индекс Standard and Poor’s [S&P 500], а красная – индекс Standard and Poor’s, из которого вычтены 5 крупнейших скачков цен. Скачок, безусловно, портит анализ, и во многих исследованиях он считается [не поддающимся анализу] особым случаем. «Невероятное совпадение, вмешательство Господа. Ну, мелочь, её можно просто отложить в сторону.» Вмешательства Господа на этом графике, а их ровно пять, как оказалось, так же важны, как и всё остальное. Иными словами, вмешательства Господа нельзя откладывать в сторону.

Это – существо, это – сам объект анализа. Если разобраться с ними, то можно разобраться и с движениями цен. Но не разобрался со скачками, то можешь анализировать так называемый шум сколько угодно, но этот анализ не будет иметь смысла. Вот эти кривые показывают влияние.

Теперь я перейду к последней теме – множество, названное моим именем. В некотором смысле, это – история моей жизни. Моё отрочество прошло во Франции, оккупированной в те годы Германией. Поскольку я думал о том, что в любой момент меня может не стать у меня были большие мечты. После войны я вновь встретился с дядей. Мой дядя был выдающимся математиком и он сказал: «Вот тебе задача. 25 лет назад я не смог решить её, и никто её не может решить. Это – построение одного математика по имени Гастон Джулиа и другого по имени Пьер Фату. Если сможешь найти тут нечто новое, – всё что угодно, – считай, что твоя карьера обеспечена.» Очень просто. Я стал изучать эту проблему, и, как и тысячи тех, кто до меня это пытался с делать, ничего не добился.

Но затем появились компьютеры. И я решил, что надо применить компьютерные возможности не к новым математическим проблемам – как, например, эта изгибающаяся штукенция: это новая проблема – а к старым проблемам. И я перешёл от так называемых действительных чисел, т.е. от точек на прямой, к комплексным числам, а это – точки на плоскости, то есть то, что и требуется в этой задаче. Получилась вот такая фигура.

Эта имеет исключительную сложность. В ней скрыто уравнение: z трансформируется в z ^ 2 + c. Так просто и скучно, так неинтересно. Теперь прокрутим это один раз, два раза… Два раза достаточно. О чудо! Появляется вот что. Я не собираюсь объяснять здесь эти вещи, но получается вот что и вот что.

Фигуры такой сложности, такой гармоничности и такой красоты получаются повторно, снова и снова и снова. Моё главное открытие заключалось в том, что эти острова имеют ту же форму, более или менее, как и вся фигура целиком. Получаются такие потрясающие украшения в стиле барокко.

И всё из этой короткой формулы, в которой всего – сколько там? – пять значков. И вот что в результате.

Цвет добавлен по двум причинам. Во-первых, оттого что фигуры получаются настолько сложными, что трудно увидеть, какой смысл несут числа. И надо выбрать какую-то систему, чтобы их отразить на плоскости. Потому я взял за принцип всегда представлять фигуры в различных цветах: какой-то цвет означает одно, а другой – другое и т.д. Это так сложно.

В 1990-м году я был в Великобритании, в Кембридже, мне там от университета вручали приз. Спустя три дня один лётчик, пролетая над полем, увидел вот это.

Откуда бы такая вещь? Ясное дело – от пришельцев.

Одна из газет в Кембридже опубликовала статью об этом «открытии», и на следующий день получила 5 тысяч писем, в которых говорилось, что это множество Мандельброта, просто очень большое.

Позвольте завершить. Эта картина получена посредством чистой математики. Простые правила могут породить бездонное чудо, если их повторять без конца.

Translated by Namik Kasumov
Reviewed by Ekaterina Tsvetkova

Узнайте подробности, как получить востребованную профессию с нуля или Level Up по навыкам и зарплате, пройдя платные онлайн-курсы SkillFactory:

Источник

Оцените статью