Решение уравнений «дробь равна нулю», описание метода, примеры
Отдельного внимания заслуживают уравнения «дробь равна нулю», то есть, уравнения f(x)/g(x)=0 , где f(x) и g(x) – произвольные выражения с переменной x . В этой статье мы, во-первых, разберем, в чем состоит метод решения таких уравнений, на чем он базируется и как обосновывается. А во-вторых, запишем алгоритм решения уравнений «дробь равна нулю» и решим несколько характерных примеров.
В чем состоит метод решения и на чем он базируется?
Метод решения уравнений «дробь равна нулю», то есть уравнений, имеющих вид f(x)/g(x)=0 , состоит в нахождении решения через решение уравнения «числитель равен нулю», то есть, через решение уравнения f(x)=0 . Пример для наглядности: решение уравнения можно найти через решения уравнения (x−1)·(x 2 −4)=0 .
Базируется метод на следующем утверждении:
Множество решений уравнения f(x)/g(x)=0 совпадает с множеством решений уравнения f(x)=0 на ОДЗ для уравнения f(x)/g(x)=0 . В частности, решением уравнения 0/g(x)=0 является любое число из ОДЗ для этого уравнения, а уравнение C/g(x)=0 , где С – отличное от нуля число, не имеет решений.
Докажем это утверждение в следующем пункте.
Обоснование метода
В основе доказательства утверждения из предыдущего пункта лежит хорошо известный факт: дробь a/b , b≠0 равна нулю тогда и только тогда, когда ее числитель есть нуль. Этот факт вытекает из определения дроби (дробь a/b , b≠0 есть такое число c , что b·c=a ) и из того, что произведение двух чисел тогда и только тогда равно нулю, когда одно из чисел есть нуль.
Начнем с доказательства частных случаев.
Докажем, что решение уравнения 0/g(x)=0 есть ОДЗ для него. В силу того, что дробь равна нулю тогда и только тогда, когда ее числитель есть нуль, равенство 0/g(x0)=0 является верным для любого числа x0 , при котором оно имеет смысл. Очевидно, что равенство 0/g(x0)=0 имеет смысл тогда и только тогда, когда x0 принадлежит ОДЗ для уравнения 0/g(x)=0 . Значит, решение уравнения 0/g(x)=0 есть ОДЗ для этого уравнения.
Докажем, что уравнение C/g(x)=0 , где С – отличное от нуля число, не имеет решений. Так как дробь равна нулю тогда и только тогда, когда ее числитель есть нуль, то равенство C/g(x0)=0 , C≠0 не может быть верным ни для какого числа x0 . Следовательно, уравнение C/g(x)=0 , C≠0 не имеет решений.
Теперь будем считать, что числитель дроби f(x)/g(x) есть выражение с переменной, а не число, и докажем, что множество решений уравнения f(x)/g(x)=0 совпадает с множеством решений уравнения f(x)=0 на ОДЗ для уравнения f(x)/g(x)=0 . Для этого достаточно доказать два момента: первый — что любой корень уравнения f(x)/g(x)=0 является корнем уравнения f(x)=0 , второй — что любой корень уравнения f(x)=0 , принадлежащий ОДЗ для уравнения f(x)/g(x)=0 , является корнем уравнения f(x)/g(x)=0 .
Приступаем к доказательству первой части. Пусть x0 – корень уравнения f(x)/g(x)=0 . Тогда f(x0)/g(x0)=0 – верное числовое равенство. Из этого неравенства и из того факта, что дробь равна нулю тогда и только тогда, когда ее числитель есть нуль, следует, что f(x0)=0 . А это равенство означает, что x0 – корень уравнения f(x)=0 .
Первая часть доказана. Приступаем к доказательству второй части.
Пусть x0 принадлежит ОДЗ для уравнения f(x)/g(x)=0 и при этом x0 — корень уравнения f(x)=0 . Так как x0 принадлежит ОДЗ для уравнения f(x)/g(x)=0 , то дробь f(x0)/g(x0) имеет смысл. Так как x0 – корень уравнения f(x)=0 , то f(x0)=0 – верное числовое равенство. Из этих результатов, а также из того факта, что дробь равна нулю тогда и только тогда, когда ее числитель есть нуль, следует, что дробь f(x0)/g(x0) равна нулю, то есть, f(x0)/g(x0)=0 . А это равенство означает, что x0 – корень уравнения f(x)/g(x)=0 .
Так доказана вторая часть и все утверждение в целом.
Алгоритм решения уравнений «дробь равна нулю»
Доказанное утверждение позволяет записать алгоритм решения уравнений «дробь равна нулю»:
- Если уравнение имеет вид 0/g(x)=0 , то надо найти область допустимых значений для этого уравнения – она и есть искомое решение уравнения.
- Если уравнение имеет вид C/g(x)=0 , C – отличное от нуля число, то сразу записываем ответ – нет решений.
- Если уравнение имеет вид f(x)/g(x)=0 , где f(x) – выражение с переменной, а не число, то
- приравниваем числитель к нулю и решаем полученное уравнение f(x)=0 ,
- отсеиваем посторонние корни (отбрасываем все корни, не принадлежащие ОДЗ для исходного уравнения, как посторонние).
Заметим, что записанный алгоритм находится в полном согласии с принципами решения дробно-рациональных уравнений, имеющих вид «дробь равна нулю». Принципы решения таких уравнений раскрываются на уроках алгебры в 8 классе. Оттуда нам известно, что для решения дробно-рационального уравнения, имеющего вид f(x)/g(x)=0 нужно приравнять к нулю числитель, решить полученное уравнение и отбросить те корни, при которых обращается в нуль знаменатель [1, с.26-30]. По сути, отбрасывание значений, при которых обращается в нуль знаменатель решаемого дробно-рационального уравнения f(x)/g(x)=0 , есть отсеивание посторонних корней по ОДЗ, так как в этом случае ОДЗ определяется условием g(x)≠0 .
Решение примеров
Рассмотрим решения трех характерных уравнений «дробь равна нулю»: с нулем в числителе, с отличным от нуля числом в числителе, и с выражением с переменной в числителе. Ими мы закроем все три типичные ситуации.
Сначала решим уравнение с нулем в числителе: .
Решите уравнение
Теперь решим уравнение , в числителе которого отличное от нуля число.
Решите уравнение
Осталось рассмотреть решение уравнения «дробь равна нулю» в случае, когда в числителе находится выражение с переменной, а не число. В этом случае, согласно алгоритму, нужно приравнять к нулю числитель, решить полученное уравнение и отсеять посторонние корни.
Решите уравнение
Источник
Дробь равна нулю
Когда дробь равна нулю?
Дробная черта — это знак деления. При делении нуля на любое число, кроме нуля, получим нуль. На нуль делить нельзя.
Таким образом, дробь равна нулю, если числитель равен нулю, а знаменатель отличен от нуля.
Решение многих задач в алгебре сводится к решению дробно рациональных уравнений, которые, в свою очередь, сводятся к уравнению типа «дробь равна нулю».
Схематически решение уравнения типа «дробь равна нулю» можно изобразить так:
Таким образом, чтобы решить уравнение типа «дробь равна нулю», надо:
1) Найти значения переменной, при которых знаменатель обращается в нуль.
2) Приравнять к нулю числитель и решить получившееся уравнение.
3) Проверить, нет ли среди корней уравнения «числитель равен нулю» значений, при которых знаменатель обращается в нуль. Если есть, их следует исключить.
4) Записать ответ.
Дробь равна нулю, если числитель равен нулю, а знаменатель — отличен от нуля, поэтому это уравнение равносильно системе
Находим значения переменной, при которых знаменатель обращается в нуль:
Можно приравнять выражение, стоящее в левой части неравенства, к нулю, и решать как обычное неполное квадратное уравнение. Можно решать как уравнение, только вместо знака равенства каждый раз писать «≠».
При этих значениях переменной выражение, стоящее в левой части уравнения, не имеет смысла (так как на нуль делить нельзя).
Решаем уравнение, в котором числитель равен нулю.
Ищем дискриминант. Так как b= -10 — чётное число, здесь удобнее воспользоваться формулой для D/4:
Так как D/4>0, уравнение имеет два корня:
Первый из корней — посторонний (он не удовлетворяет условию x≠7), поэтому в ответ записывает только корень 3. Ответ: 3.
Это уравнение равносильно системе
Его корни — значения переменной, при котором выражение, стоящее в левой части уравнения, не имеет смысла.
Общий множитель 4x выносим за скобки
Второй корень не подходит (он не удовлетворяет условию x≠0,5).
Переходим к решению уравнения 3x-12=0. Это — линейное уравнение. Неизвестное — в одну сторону, известное — в другую с противоположным знаком:
Полученный корень является посторонним, так как не удовлетворяет условию x≠4. Значит, исходное уравнение типа «дробь равна 0» корней не имеет.
Ответ: нет корней.
Решаем квадратное уравнение
Так как D/4=0, квадратное уравнение имеет один корень
Теперь решаем уравнение
Посторонних корней нет (оба корня удовлетворяют условию x≠1/4).
Источник