Что значит задавать движение точки

Способы задания движения точки. Задать движение точки означает задать ее положение в каждый момент времени

Задать движение точки означает задать ее положение в каждый момент времени. Положение это должно определяться, как уже отме­чалось, в какой-либо системе координат. Однако для этого не обяза­тельно всегда задавать сами координаты; можно использовать величи­ны, так или иначе с ними связанные. Ниже описаны три основных способа задания движения точки.

1. Естественный способ. Этим способом пользуются, если из­вестна траектория движения точки. Траекторией называется совокуп­ность точек пространства, через которые проходит движущаяся мате­риальная частица. Это линия, которую она вычерчивает в пространстве. При есте­ст­венном способе необходимо задать (рис. 1):а) траекторию движения (отно­си­тель­но какой-либо системы коор­динат);б) произвольную точку на ней нуль, от которого отсчитывают расстояние S до движущейся частицы вдоль траектории;в) положительное направление от­счета S (при смещении точки М в противоположном направлении S отрицательно);г) начало отсчета времени t;д) функцию S(t), которая называется законом движения**) точки.2. Координатный способ. Это наиболее универсальный и ис­черпывающий способ описания движения. Он предполагает задание:а) системы координат (не обязательно декартовой) q1, q2, q3;б) начало отсчета времени t;в) закона движения точки, т.е. функций q1(t), q2(t), q3(t). Говоря о координатах точки, мы всегда будем иметь в виду (если не оговорено противное) ее декартовы координаты.3. Векторный способ. Положение точки в пространстве может быть определено также и радиус-вектором, проведенным из некоторо­го начала в данную точку (рис. 2). В этом случае для описания дви­жения необходимо задать:а) начало отсчета радиус-вектора r;б) начало отсчета времени t;в) закон движения точки r(t).Поскольку задание одной векторной величины r эквивалентно заданию трех ее проекций x, y, z на оси координат, от век­торного способа легко перейти к коорди­натному. Если ввести единичные векторы i, j, k ( i= j = k= 1), направленные соответственно вдоль осей x, y и z (рис. 2), то, очевидно, закон движения может быть представлен в виде*)

Читайте также:  Что значит перед маркером jpeg sos отсутствует маркер sofn

r(t) = x(t)i+y(t)j+z(t)k. (1) Преимущество векторной формы записи перед координатной в компактности (вместо трех величин оперируют с одной) и часто в большей наглядности. Пример. На неподвижную проволочную полуокружность на­дето маленькое колечко М, через которое проходит еще прямолиней­ный прут АВ (рис. 3), равномерно вращающийся вокруг точки А ( = t, где =const). Найти законы движения ко­лечка М вдоль стержня АВ и относительно полуокружности.

Для решения первой части задачи воспользуемся координатным способом, направив ось х декартовой системы вдоль стержня и выбрав ее начало в точке А. Поскольку вписанный АМС прямой (как опирающийся на диаметр),

x(t) = AM = 2Rcos = 2Rcost,

где R радиус полуокружности. Полученный закон движения назы­вается гармоническим колебанием (колебание это будет продолжаться, очевидно, лишь до того момента, пока колечко не дойдет до точки А).

Вторую часть задачи будем решать, используя естественный спо­соб. Выберем положительное направление отсчета расстояния вдоль траектории (полуокружности АС) против часовой стрелки (рис. 3), а нуль совпадающим с точкой С. Тогда длина дуги СМ как функция времени даст закон движения точки МS(t) = R2 = 2R t, т.е. колечко будет равномерно двигаться по окружности радиусом R с угловой скоростью 2 . Как явствует из проведенного рассмотрения,нуль отсчета времени в обоих случаях соответствовал моменту, когда колечко находилось в точке С.

Источник

Что значит — «задать движение точки»?

Задать уравнение движения точки в заданной системе координат.

Какие способы задания движения точки используются при описании движения и при решении задач?

Векторный координатный и естесственный

Что понимается под годографом переменного вектора?

Годографом вектора называется линия, которую описывает конец переменного вектора, начало которого совмещено снеподвижной точкой.

Каков физический смысл производной по времени от любого переменного вектора?

Производная по времени от любого переменного вектора — это вектор, направленный по касательной к годографу дифференцируемого вектора и равный скорости движения конца вектора по его годографу.

Какой вид имеет годограф единичного вектора вращающегося относительно неподвижной оси системы координат?

Окружность

Какой вид имеют параметрические уравнения годографа радиуса-вектора точки?

Какой вид имеет годограф вектора скорости точки при её прямолинейном движении?

Какой вид имеет годограф вектора скорости точки при её равномерном движении по окружности?

Какой вектор направлен по касательной к годографу вектора скорости точки?

Как определяются векторы скорости и ускорения точки при векторном способе задания её движения?

Скорость — производная по времени от радиуса-вектора движущейся точки.

Ускорение — вторая производная по времени от радиуса-вектора движущейся точки

Как по величине и по направлению определяются векторы скорости и ускорения точки при координатном способе задания движения?

Что задаётся при естесственном способе задания движения точки?

Зависимость дуговой координаты от времени.

Как выводится формула для определения вектора скорости точки при естесственном способе задания движения?

Дифференцируя как сложную функцию по времени получим: v

Как выводится формула для определения ускорения точки при естесственном способе задания её движения?

Как определяется по величине и что характеризует и как направлено касательное ускорение точки?

Касательное ускорение характеризует изменение величины скорости и направлено по касательной к траектории точки

Как определяется по величине что характеризует и как направлено нормальное ускорение точки?

Нормальное ускорение характеризует изменение направления вектора скорости точки, и направлено к центру кривизны траектории точки.

Источник

iSopromat.ru

Рассмотрим три существующих способа задания движения материальной точки: координатный, векторный и естественный.

Чтобы иметь возможность определить параметры движения точки необходимо задать закон ее движения.

В зависимости от известных величин и поставленной задачи могут быть использованы следующие способы задания движения точки: векторный, координатный и естественный.

Векторный

При векторном способе задания движения положение точки определяется радиус-вектором, проведенным из неподвижной точки в выбранной системе отсчета.

Координатный

При координатном способе задания движения задаются координаты точки как функции времени:

Это параметрические уравнения траектории движущейся точки, в которых роль параметра играет время t. Чтобы записать ее уравнение в явной форме, надо исключить из них t.

Естественный

При естественном способе задания движения задаются траектория точки, начало отсчета на траектории с указанием положительного направления отсчета, закон изменения дуговой координаты: s=s(t). Этим способом удобно пользоваться, если траектория точки заранее известна.

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Источник

Способы задания движения материальной точки скорость, ускорение

Задать движение точки означает задать ее положение в каждый момент времени. Положение это должно определяться, как уже отмечалось, в какой-либо системе координат. Однако для этого не обязательно всегда задавать сами координаты; можно использовать величины, так или иначе с ними связанные. Ниже описаны три основных способа задания движения точки.

1. Естественный способ. Этим способом пользуются, если известна траектория движения точки. Траекторией называется совокупность точек пространства, через которые проходит движущаяся материальная частица. Это линия, которую она вычерчивает в пространстве. При естественном способе необходимо задать (рис. 1):

а) траекторию движения (относительно какой-либо системы координат);

б) произвольную точку на ней нуль, от которого отсчитывают расстояние S до движущейся частицы вдоль траектории;

в) положительное направление отсчета S (при смещении точки М в противоположном направлении S отрицательно);

г) начало отсчета времени t;

д) функцию S(t), которая называется законом движения**) точки.

2. Координатный способ. Это наиболее универсальный и исчерпывающий способ описания движения. Он предполагает задание:

а) системы координат (не обязательно декартовой) q1, q2, q3;

б) начало отсчета времени t;

в) закона движения точки, т.е. функций q1(t), q2(t), q3(t).

Говоря о координатах точки, мы всегда будем иметь в виду (если не оговорено противное) ее декартовы координаты.

3. Векторный способ. Положение точки в пространстве может быть определено также и радиус-вектором, проведенным из некоторого начала в данную точку (рис. 2). В этом случае для описания движения необходимо задать:

а) начало отсчета радиус-вектора r;

б) начало отсчета времени t;

в) закон движения точки r(t).

Ускорение точки. , [м/сек2]. Проекции уск.-я: и т.д. Модуль уск.-я: , направляющ. косинусы: , и т.д.

При задании движения в полярных координатах: проекции ускорения на радиальное направление , поперечное направление , модуль ускорения . При естественным сп. задания движения полное ускорение раскладывают на нормальное и касательное (тангенциальное) ускорения: . Модуль нормального ускорения: , r – радиус кривизны траектории, нормальное ускорение направлено по нормали к траектории (^ к касательной) всегда к центру кривизны, т.е. в сторону вогнутости. Нормальное ускорение характеризует изменение скорости по направлению. Модуль касательного ускорения , направлено по касательной к траектории, либо в сторону скорости, либо в обратную. Касательное ускорение характеризует изменение скорости по величине. При ускоренном движ-ии направление касат. уск. и скорости совпадают, при замедленном – противоположно. ^ , Þ . Вектор ускорения лежит в соприкасающейся плоскости Þ его проекция на бинормаль равна 0 (главная нормаль лежит в соприкасающейся плоскости, т.е. в плоскости плоской кривой, бинормаль – ^ к главной нормали и касательной). Частные случаи движения точки:

1) Прямолинейное: радиус кривизны r= ¥ (бесконечно большой) Þ аn=0, a=at.

2) Равномерное криволинейное движ-ие: v=const Þ at=0, a=an. Уск. появляется только за счет изменения направления скорости. Закон движ-ия: s=s0+v×t, при s0=0 v=s/t.

3) Равномерное прямолинейное движ-ие: а=at=an=0. Единственное движ-ие, где а=0.

4) Равнопеременное криволинейное движ-ие: at=const, v=v0+at×t, . При равноуск. движении знаки у at и v одинаковы, при равнозамедленном – разные.

13)Поступательным движением твердого тела называется такое его движение, при котором любая прямая, проведенная в теле, остается параллельной своему первоначальному положению во все время движения.

Теорема. При поступательном движении твердого тела все его точки движутся по одинаковым и параллельным траекториям и имеют в каждый данный момент времени равные по модулю и направлению скорости и ускорения.

Доказательство. Для доказательства теоремы рассмотрим движение отрезка прямой , проведенного в теле, совершающем поступательное движение (рис. 2.10). Из определения поступательного движения следует, что в каждый данный момент времени отрезок , занимающий последовательно положения , , и т.д., остается параллельным своему первоначальному положению. Учитывая это и то что , делаем вывод, что ломаные линии и параллельны и при наложении совпадут всеми своими точками. При бесконечном уменьшении промежутков времени между рассматриваемыми положениями отрезка мы видим, что точка и точка описывают одинаковые кривые, т. е. кривые, совпадающие при наложении.

Для доказательства второй части теоремы заметим, что

Возьмем производные по времени от левой и правой частей

Так как , то .

Разобранная теорема позволяет сделать вывод, что поступательное движение твердого тела вполне определяется движением какой-либо одной его точки

Источник

Оцените статью