Решение линейных неравенств
Прежде чем перейти к определению и решению неравенств давайте вспомним, какие знаки используют в математике для сравнения величин.
Символ | Название | Тип знака |
---|---|---|
> | больше | строгий знак (число на границе не включается ) |
строгий знак (число на границе не включается ) | ||
≥ | больше или равно | нестрогий знак (число на границе включается ) |
≤ | меньше или равно | нестрогий знак (число на границе включается ) |
Теперь мы можем разобраться, что называют линейным неравенством и чем неравенство отличается от уравнения.
В отличии от уравнения в неравенстве вместо знака равно « = » используют любой знак сравнения: « > », « », « ≤ » или « ≥ ».
Линейным неравенством называют неравенство, в котором неизвестное стоит только в первой степени.
Рассмотрим пример линейного неравенства.
Как решить линейное неравенство
Чтобы решить неравенство, нужно чтобы в левой части осталось только неизвестное в первой степени с коэффициентом « 1 ».
При решении линейных неравенств используют правило переноса и правило деления неравенства на число.
Правило переноса в неравенствах
Также как и в уравнениях, в неравенствах можно переносить любой член неравенства из левой части в правую и наоборот.
При переносе из левой части в правую (и наоборот) член неравенства меняет свой знак на противоположный .
Вернемся к нашему неравенству и используем правило переноса.
Для того, чтобы понять, что получается при решении неравенства, нам нужно вспомнить, понятие числовой оси.
Нарисуем числовую ось для неизвестного « x » и отметим на ней число « 14 ».
При нанесении числа на числовую ось соблюдаются следующие правила:
- если неравенство строгое, то число отмечается как «пустая» точка.
Это означает, что число не входит в область решения;
- если неравенство нестрогое, то число отмечается как «заполненная» точка.
Это означает, что число входит в область решения.
Заштрихуем на числовой оси по полученному ответу « x » все решения неравенства, то есть область слева от числа « 14 ».
Рисунок выше говорит о том, что любое число из заштрихованной области при подстановке в исходное неравенство « x − 6 » даст верный результат.
Возьмем, например число « 12 » из заштрихованной области и подставим его вместо « x » в исходное неравенство « x − 6 ».
Другими словами, можно утверждать, что любое число из заштрихованной области будет являться решением неравенства.
Решить неравенство — это значит найти множество чисел, которые при подстановке в исходное неравенство дают верный результат.
Решением неравенства называют множество чисел из заштрихованной области на числовой оси.
В нашем примере ответ « x » можно понимать так: любое число из заштрихованной области (то есть любое число меньшее « 14 ») будет являться решением неравенства « x − 6 ».
Правило умножения или деления неравенства на число
Рассмотрим другое неравенство.
Используем правило переноса и перенесём все числа без неизвестного, в правую часть.
Теперь нам нужно сделать так, чтобы при неизвестном « x » стоял коэффициент « 1 ». Для этого достаточно разделить и левую, и правую часть на число « 2 ».
При умножении или делении неравенства на число, на это число умножается (делится) и левая, и правая часть.
- Если неравенство умножается (делится) на положительное число, то
знак самого неравенства остаётся прежним . - Если неравенство умножается (делится) на отрицательное число, то
знак самого неравенства меняется на противоположный .
Разделим « 2x > 16 » на « 2 ». Так как « 2 » — положительное число, знак неравенства останется прежним.
Рассмотрим другое неравенство.
Разделим неравенство на « −3 ». Так как мы делим неравенство на отрицательное число, знак неравенства поменяется на противоположный.
Источник
Наибольшее целое решение системы неравенств
Задание, которое часто встречается в алгебре,- найти наибольшее целое решение системы неравенств.
Чтобы найти наибольшее целое решение системы неравенств, надо решить её и выбрать из полученного множества решений наибольшее целое число (если такое есть).
Найти наибольшее целое решение системы неравенств:
2x + 2\\ 1 — 3x
Неизвестные переносим в одну сторону, известные — в другую с противоположным знаком:
2 — 12\\ — 3x + 5x
Упрощаем и делим каждое неравенство на число, стоящее перед иксом. При делении на положительное число b» href=»http://www.algebraclass.ru/axb/» target=»_blank»>знак неравенства не меняется:
— 10\_\_\_\left| <:5 >0> \right.\\ 2x 0> \right. \end
— 2\\ x
Отмечаем решение каждого из неравенств на числовой прямой. Решением системы является пересечение решений неравенств (то есть общая часть, где штриховка есть на каждой числовой прямой). Поскольку неравенства строгие, концы промежутков не включаем в решение.
Из целых решений системы выбираем наибольшее и записываем ответ.
Неизвестные — в одну сторону, известные — в другую с противоположным знаком:
Делим обе части неравенства на число, стоящее перед иксом. При делении при делении на отрицательное число знак неравенства меняется на противоположный, при делении на положительное число — не изменяется:
0> \right. \end
Решения неравенств отмечаем на числовых прямых и из полученного множества решений выбираем наибольшее.
Поскольку неравенства нестрогие, концы промежутка входят в решение. Значит, наибольшее целое решение системы равно 2.
4x \end
Обе части каждого из неравенств умножаем на наименьший общий знаменатель. В первом неравенстве он равен 12, во втором — 2. При умножении на положительное число знак неравенства не изменяется:
0> \right.\\ \frac<<7
8x \end
Неизвестные — в одну сторону, известные — в другую с противоположным знаком:
— 6 \end
Обе части первого неравенства делим на положительное число, знак неравенства при этом не изменяется. При делении обеих частей на отрицательное число знак второго неравенства изменяется на противоположный:
0> \right.\\ — x > — 6\_\_\_\left| <:( - 1)
Оба неравенства с одинаковым знаком. Применяя правило «меньше меньшего», приходим к неравенству x Рубрика: Неравенства | Комментарии
Источник
Наибольшее решение неравенства
При изучении темы «Линейные неравенства» встречаются задания, в которых требуется найти наибольшее решение неравенства либо наибольшее целое (или натуральное) решение неравенства.
Рассмотрим примеры выполнения таких заданий.
1) Найти наибольшее целое решение неравенства :
Раскроем скобки и упростим правую часть неравенства. Первые скобки раскрываем по формуле квадрата разности:
Неизвестные — в одну сторону, известные — в другую с противоположными знаками:
При делении на отрицательное число знак неравенства изменяется на противоположный:
Наибольшее решение неравенства — x= -2.
Для большей наглядности решение неравенства можно изобразить на числовой прямой:
2) Найти наибольшее натуральное решение неравенства :
Раскроем скобки. В левой части — произведение суммы и разности, в правой — квадрат разности:
Неизвестные — в одну сторону, известные — в другую с противоположными знаками
0> \right.\]» title=»Rendered by QuickLaTeX.com»/>
Обе части неравенства делим на число, стоящее перед иксом. При делении на положительное число знак неравенства не изменяется:
Наибольшее натуральное решение неравенства x=1.
3) Найти наибольшее решение неравенства :
Обе части неравенства умножим на наименьший общий знаменатель:
0> \right.\]» title=»Rendered by QuickLaTeX.com»/>
При умножении на положительное число знак неравенства не изменяется:
Как показывает практика, произведение дополнительного множителя и числителя лучше записывать с помощью скобок. Если перед дробью стоит знак «минус», числитель также лучше заключить в скобки. Такая запись позволяет избежать ошибок, связанных с раскрытием скобок.
Обе части неравенства делим на число, стоящее перед иксом. При делении на отрицательное число знак неравенства изменяется на противоположный:
Наибольшее решение неравенства равно -4,6 (все остальные значения x меньше него).
4) Определить наибольшее решение неравенства :
Обе части неравенства умножаем на наименьший общий знаменатель 6. При умножении на положительное число знак неравенства не изменяется:
0> \right.\]» title=»Rendered by QuickLaTeX.com»/>
Неизвестные — в одну сторону, известные — в другую с противоположными знаками:
Наибольшее значение в данном случае указать нельзя (x=9 не входит в решение).
Ответ: неравенство не имеет наибольшего значения.
Источник