Неравенства.
Сначала несколько слов о неравенствах вообще.
Что такое неравенство? Берётся любое уравнение, знак «=» («равно») заменяется на другой значок (>; ≥; ), или меньше ( 2 — верное неравенство. 5 2
Умножим обе части на +3, получим:
15 > 6
Возражения есть? Возражений нет.) А если умножим обе части исходного неравенства на -3, получим:
-15 > -6
А это уже откровенная ложь.) Полное враньё! Обман народа! Но стоит изменить знак неравенства на противоположный, как всё становится на свои места:
Как решаются такие неравенства? Они решаются очень просто! А именно: с помощью тождественных преобразований неравенств сводим самое замороченное линейное неравенство прямо к ответу. Вот и всё решение. Главные моменты решения я буду выделять. Во избежание дурацких ошибок.)
Решаем это неравенство:
х+3 > 5х-5
Решаем точно так же, как и линейное уравнение. С единственным отличием:
Внимательно следим за знаком неравенства!
Первый шаг самый обычный. С иксами — влево, без иксов — вправо. Это первое тождественное преобразование, простое и безотказное.) Только знаки у переносимых членов не забываем менять.
Знак неравенства сохраняется:
х-5х > -5-3
Знак неравенства сохраняется:
-4х > -8
Осталось применить последнее тождественное преобразование: разделить обе части на -4.
Делим на отрицательное число.
Знак неравенства изменится на противоположный:
х — 6
Не так получилось!? А за знаками следили!? И за знаками членов, и за знаком неравенства.
Опять соображаем. Нам нужно найти конкретное число, подходящее и под ответ, и под условие «наименьшее целое». Если сразу не осеняет, можно просто взять любое число и прикинуть. Два больше минус шести? Конечно! А есть подходящее число поменьше? Разумеется. Например, ноль больше -6. А ещё меньше? Нам же самое маленькое из возможных надо! Минус три больше минус шести! Уже можно уловить закономерность и перестать тупо перебирать числа, правда?)
Берём число поближе к -6. Например, -5. Ответ выполняется, -5 > — 6. Можно найти ещё число, меньше -5, но больше -6? Можно, например -5,5. Стоп! Нам сказано целое решение! Не катит -5,5! А минус шесть? Э-э-э! Неравенство строгое, минус 6 никак не меньше минус 6!
Стало быть, правильный ответ: -5.
Надеюсь, с выбором значения из общего решения всё понятно. Ещё пример:
Источник
Неравенства: общие сведения
Неравенство. Тождественное неравенство.
Строгие и нестрогие неравенства.
Решение неравенств и систем неравенств.
Основные свойства неравенств.
Некоторые важные неравенства.
Два выражения (числовые или буквенные), соединённые одним из знаков: «больше» (>), «меньше» ( 2 · 4 – 10, a 2 ≥ 0, | – 5 | > 3. (Почему?)
В зависимости от знака неравенства мы имеем либо строгие неравенства ( > , Основные свойства неравенств.
1. | Если a b , то b > a ; или если a > b , то b a . Если a > b , то a + c > b + c ; или если a b , то a + c b + c . То есть, можно прибавлять (вычитать) одно и то же число к обеим частям неравенства. Если a > b и c > d , то a + c > b + d . То есть, неравенства одного смысла (с одинаковым знаком > или можно почленно складывать. Заметим, что неравенства одного смысла нельзя почленно вычитать одно из другого, так как результат может быть неверным. Если a > b и c d , то a – c > b – d . Или если a b и c > d , то a – c То есть, неравенства противоположного смысла можно почленно вычитать одно из другого, и брать знак неравенства, являю щегося уменьшаемым. Если a > b и m > 0 , то ma > mb и a / m > b / m . То есть, обе части нера венства можно умножить или разделить на одно и то же положи тельное число. Неравенство при этом сохраняет свой знак. Если a > b и m , то ma mb и a / m b / m . То есть, обе части неравенства можно умножить или разделить на одно и то же отрица тельное число. Неравенство при этом меняет свой знак на обратный. Некоторые важные неравенства. 1. | a + b | 2. a + 1 / a Среднее геометрическое не больше среднего арифметического. В общем случае это неравенство имеет вид: Числа a 1 , a 2 , … , a n — положительны. Равенство имеет место, если только все числа равны. Copyright © 2004 — 2007 Др. Юрий Беренгард. All rights reserved. Источник Равносильные неравенства, преобразование неравенствВ процессе решения неравенств зачастую происходит переход от заданного неравенства к неравенствам иного вида, имеющим то же решение, но определяемое проще. Иными словами, в результате преобразований заданное неравенство возможно заменить равносильным ему, облегчающим поиск решения. Данная статья посвящена способам равносильных преобразований. Сформулируем определение, рассмотрим основные виды преобразований. Равносильные неравенства: определение, примерыРавносильные неравенства – неравенства, имеющие одни и те же решения. В частном случае, неравенства, не имеющие решений, тоже называются равносильными. Иными словами, если неравенства равносильны и имеют решения, то любое решение первого будет являться и решением второго. Ни одно из равносильных неравенств не имеет решений, не являющихся решениями других, равносильных ему неравенств. Даны три равносильных неравенства: x > 2 , 2 · x : 2 > 2 и x > 3 — 1 . В самом деле, множества решений этих неравенств одинаковые, решение каждого их них – числовой промежуток ( 2 , + ∞ ) . Неравенства х 6 ≥ — 2 и | х + 7 | 0 являются равносильными, поскольку оба не имеют решений. Неравенства х > 3 и х ≥ 3 – не равносильные: х = 3 служит решением второго из этих равенств, но не служит решением первого. Отметим, что указанное определение относится к неравенствам как с одной переменной, так и с двумя, тремя и более. Равносильные преобразования неравенствВозможно совершить некоторые действия с правой и левой частью неравенств, что даст возможность получать новые неравенства, имеющие решения, как и у исходного. Равносильное преобразование неравенства – это замена исходного неравенства равносильным ему, т.е. таким, которое имеет то же множество решений. Сами действия-преобразования, приводящие к равносильному неравенству, тоже называют равносильными преобразованиями. Равносильные преобразования дают возможность находить решения неравенств, преобразуя заданное неравенство в равносильное ему, но более простое и удобное для решения. Рассмотрим основные виды равносильных преобразований: по сути без них не обходится решение ни одного неравенства. Отметим также, что равносильные преобразования неравенств очень похожи на равносильные преобразования уравнений. Схожи и принципы доказательства, только, конечно, в данном случае доказательства будут строиться на основе свойств числовых неравенств. Итак, перечислим основные виды равносильных преобразований неравенств:
Доказательство 1 Докажем утверждение. Пусть дано неравенство с одной переменной A ( x ) B ( x ) , где A ( x ) и B ( x ) — некие выражения с переменной x . Допустим, выражение C ( x ) является тождественно равным выражению A ( x ) , а выражение D ( x ) является тождественно равным B ( x ) на ОДЗ заданного неравенства. Найдем доказательство, что неравенство C ( x ) D ( x ) служит равносильным неравенству A ( x ) B ( x ) . С этой целью нам нужно продемонстрировать тот факт, что любое решение q заданного неравенства будет также решением неравенства C ( x ) D ( x ) , и наоборот: любое решение неравенства C ( x ) D ( x ) будет решением заданного неравенства A ( x ) B ( x ) . Мы приняли, что q – решение неравенства A ( x ) B ( x ) , тогда верным будет числовое неравенство A ( q ) B ( q ) . Отсюда по разностному определению неравенства выводим, что A ( q ) − B ( q ) 0 . Выражение A ( q ) − B ( q ) можно записать в виде A ( q ) + ( C ( q ) − C ( q ) ) − B ( q ) + ( D ( q ) − D ( q ) ) , что является тем же самым, ( A ( q ) − C ( q ) ) + C ( q ) − ( B ( q ) − D ( q ) ) − D ( q ) . Выражения A ( x ) и C ( x ) , B ( x ) и D ( x ) по условию тождественно равны, тогда: A ( q ) = C ( q ) и B ( q ) = D ( q ) , откуда A ( q ) − C ( q ) = 0 и B ( q ) − D ( q ) = 0 . Таким образом, ( A ( q ) − C ( q ) ) + C ( q ) − ( B ( q ) − D ( q ) ) − D ( q ) = 0 + C ( q ) − 0 − D ( q ) = C ( q ) − D ( q ) . Мы продемонстрировали, что значение выражения A ( q ) − B ( q ) равно значению выражения C ( q ) − D ( q ) , а поскольку A ( q ) − B ( q ) 0 , то и C ( q ) − D ( q ) 0 . Отсюда делаем вывод, что C ( q ) D ( q ) . И крайнее неравенство означает, что q – решение неравенства C ( x ) D ( x ) . Таким же образом доказывается, что любое решение неравенства C ( x ) D ( x ) будет решением и неравенства A ( x ) B ( x ) , тем самым будет доказано и исходное утверждение. Подобные преобразования не должны сужать ОДЗ заданного неравенства, тогда возможно совершать тождественные преобразования обеих сторон неравенства. Покажем пример использования. Рассмотрим неравенство x > 2 + 6 . В правой части возможно заменить сумму значением так, чтобы получилось равносильное неравенство x > 8 . В неравенстве 3 · ( x + 1 ) − 2 · x + 11 ≤ 2 · y + 3 · ( y + 1 ) + x , в обоих его частях мы раскроем скобки и приведем подобные слагаемые, получив в итоге равносильное неравенство x + 14 ≤ 5 · y + 3 + x . Если детально разобрать наши действия, то мы заменили левую часть данного неравенства тождественно равным ей выражением x + 14 , а правую часть – тождественно равным ей выражением 5 · y + 3 + x на области допустимых значений переменных x и y заданного неравенства. Еще раз особенно укажем, как важен учет ОДЗ (область допустимых значений) при совершении замены частей неравенства тождественными выражениями. В случае, когда ОДЗ нового неравенства будет отлична от ОДЗ исходного, неравенство не может считаться равносильным. Это крайне важный аспект, пренебрежение им приводит к неверным ответам при решении неравенств.
Доказательство 2 Приведем обоснование указанного утверждения. Допустим, задано неравенство A ( x ) B ( x ) и некое число c . Необходимо доказать, что заданному равносильно неравенство A ( x ) + c B ( x ) + c , которое мы получим, прибавив к обеим частям исходного неравенства число c . Продемонстрируем, что любое решение q заданного неравенства будет также и решением неравенства A ( x ) + c B ( x ) + c , и наоборот. Мы приняли, что q – решение неравенства A ( x ) B ( x ) , тогда верно следующее: A ( q ) B ( q ) . Из свойств числовых неравенств следует, что к обеим частям верного числового неравенства можно прибавить любое число. Мы прибавим число c к обеим частям крайнего неравенства, получим A ( q ) + c B ( q ) + c , и это означает, что q служит решением неравенства A ( x ) + c B ( x ) + c . Подобным же образом можно доказать, что любое решение неравенства A ( x ) + c B ( x ) + c будет являться и решением неравенства A ( x ) B ( x ) . Мы приняли, что q — решение неравенства A ( x ) + c B ( x ) + c , тогда A ( q ) + c B ( q ) + c , из обеих частей вычтем число c , получим A ( q ) B ( q ) , где q – решение неравенства A ( x ) B ( x ) . Таким образом, неравенства A ( x ) B ( x ) и A ( x ) + c B ( x ) + c являются равносильными. Для наглядности укажем пример: x > 2 и x − 5 > 2 − 5 – равносильные неравенства, а, учитывая рассматриваемое выше утверждение, равносильным им является и неравенство x − 5 > − 3 .
Пример 3 Исходному неравенству x 7 будет равносильно неравенство x + ( 12 · x − 1 ) 7 + ( 12 · x − 1 ) .
Пример 4 Исходному неравенству 3 · x − 5 · y > 12 равносильно неравенство 3 · x > 12 + 5 · y .
Доказательство 3 Докажем сначала первую часть утверждения. Допустим, задано неравенство A ( x ) B ( x ) и c – некое положительное число. Приведем доказательство, что A ( x ) B ( x ) и A ( x ) · c B ( x ) · c — равносильные неравенства. Примем q как решение заданного неравенства, в таком случае верным будет числовое неравенство A ( q ) B ( q ) . Опираясь на свойства числовых неравенств, можем утверждать, что, умножив обе части верного числового неравенства на положительное число, получим верное числовое неравенство. Производим умножение на заданное число c , что дает нам A ( q ) · c B ( q ) · c . Это значит, что q — решение неравенства A ( x ) · c B ( x ) · c . Теперь в обратную сторону: примем q как решение неравенства A ( x ) · c B ( x ) · c , в таком случае: A ( q ) · c B ( q ) · c . Разделим обе части этого числового неравенства на положительное число c (опираясь на свойства числовых неравенств), что даст нам верное числовое неравенство A ( q ) B ( q ) . Отсюда можно сделать вывод, что q — решение неравенства A ( x ) B ( x ) . Так, мы доказали, что при положительном числе c неравенства A ( x ) B ( x ) и A ( x ) · c B ( x ) · c являются равносильными. Таким же образом приводится доказательство второй части утверждения. Здесь можно опереться на свойство умножения и деления числовых неравенств на отрицательное число при смене знака неравенства на противоположный. Задано неравенство 2 · x ≤ 5 . Умножим его левую и правую части на положительное число 3 , что даст нам равносильное неравенство 6 · x ≤ 15 . Задано неравенство — 2 3 · z 1 . Разделим левую и правую его части на отрицательное число — 2 3 , сменив знак неравенства. Получим z > — 1 1 2 — неравенство, равносильное заданному. Расширим и это свойство неравенств:
Пример 7 Задано неравенство x > 1 . Умножим его правую и левую части на выражение x 2 + 1 , положительное на всей ОДЗ, и получим равносильное неравенство x · ( x 2 + 1 ) > 1 · ( x 2 + 1 ) . В целом, есть и другие равносильные преобразования, однако, они не так распространены и скорее имеют отношение к конкретному виду неравенств, например, к логарифмическим неравенствам. Познакомиться с ними можно подробнее в соответствующей теме. Результат неравносильных преобразований неравенствСколь уж существуют равносильные преобразования, имеют место и неравносильные. Такие действия приводят к искажению заданного неравенства и дают в итоге решение, не являющееся истинным для исходного неравенства. Случается, что и при неравносильных преобразованиях получается верный ответ, но это не более чем случайность. Собственно, вывод очевиден: решая неравенства, производить только равносильные преобразования. Разберем примеры для лучшего понимания теории. Пусть заданы неравенства x > − 2 и 1 x — 1 x + x > — 2 . Решением первого будет числовой промежуток ( − 2 , + ∞ ) , а второго – множество — 2 , 0 ∪ 0 , + ∞ . Пусть необходимо решить второе неравенство. Конечно, сазу приходит мысль об упрощении левой части приведением слагаемых, произведя замену просто на х, что даст переход к простому неравенству x > − 2 . Однако мы намеренно не учтем, что переход надо осуществить на ОДЗ переменной х ( х ≠ 0 ) , тогда предложенное выше преобразование даст нам неравносильное неравенство x > − 2 , а следовательно – неверный ответ ( − 2 , + ∞ ) взамен нужного — 2 , 0 ∪ 0 , + ∞ . Посмотрим с другой стороны: Мы решим неравенство x > − 2 . При этом нам захотелось заменить его якобы равносильным неравенством 1 x — 1 x + x > — 2 . Однако оно не является таковым: нуль не служит его решением, однако служит решением исходного неравенства. Суть в том, что выражение в его левой части тождественно равно не на всей области допустимых значений исходного неравенства: когда х = 0 , неравенство не равно x (при х = 0 оно не определено). Совершенные действия приведут нас к неверному ответу — 2 , 0 ∪ 0 , + ∞ взамен правильного ( − 2 , + ∞ ) . Признак вероятного неравносильного преобразования – сужение области допустимых значений. Вновь обратимся к примеру выше: когда мы производили переход от неравенства x > − 2 к неравенству 1 x — 1 x + x > — 2 , произошло сужение ОДЗ со всего множества действительных чисел до множества без нуля. Такое положение вещей точно указывает на то, что полученное в итоге неравенство никак не будет равносильным исходному, т.е. такой переход не приведет к необходимому верному результату. Неравносильные преобразования чаще всего происходят при невнимательном использовании свойств корней, логарифмов и модуля. Эти моменты будут детально рассмотрены в темах о решении неравенств соответствующих видов. Источник |