Что значит тождественно по алгебре

Содержание
  1. Тождества: определение, обозначение, примеры
  2. Что представляет собой тождество
  3. Знак тождества
  4. Примеры тождеств
  5. Что необходимо знать ученику о тождествах в алгебре
  6. Тождественные преобразования — основные понятия и определения
  7. Тождественные выражения в математике
  8. Тождественные преобразования выражений
  9. Пояснения на примерах
  10. Тождественные преобразования выражений, их виды
  11. Тождественное преобразование выражения. Что это такое?
  12. Тождественные преобразования и ОДЗ
  13. Основные тождественные преобразования
  14. Перестановка местами слагаемых, множителей
  15. Раскрытие скобок
  16. Группировка слагаемых, множителей
  17. Замена разностей суммами, частных произведениями и обратно
  18. Выполнение действий с числами
  19. Вынесение за скобки общего множителя
  20. Приведение подобных слагаемых
  21. Замена чисел и выражений тождественно равными им выражениями
  22. Прибавление и вычитание одного и того же числа

Тождества: определение, обозначение, примеры

Начнем разговор о тождествах, дадим определение понятия, введем обозначения, рассмотрим примеры тождеств.

Что представляет собой тождество

Начнем с определения понятия тождества.

Тождество представляет собой равенство, которое верно при любых значениях переменных. Фактически, тождеством является любое числовое равенство.

По мере разбора темы мы можем уточнять и дополнять данное определение. Например, если вспомнить понятия допустимых значений переменных и ОДЗ, то определение тождества можно дать следующим образом.

Тождество – это верное числовое равенство, а также равенство, которое будет верным при всех допустимых значениях переменных, которые входят в его состав.

Про любые значения переменных при определении тождества речь идет в пособиях и учебниках по математике для 7 класса, так как школьная программа для семиклассников предполагает проведение действий исключительно с целыми выражениями (одно- и многочленами). Они имеют смысл при любых значениях переменных, которые входят в их состав.

Программа 8 класса расширяется за счет рассмотрения выражений, которые имеют смысл только для значений переменных из ОДЗ. В связи с этим и определение тождества меняется. Фактически, тождество становится частным случаем равенства, так как не каждое равенство является тождеством.

Читайте также:  Если лицо бледное что это значит

Знак тождества

Запись равенства предполагает наличие знака равенства « = » , от которого справа и слева располагаются некоторые числа или выражения. Знак тождества имеет вид трех параллельных линий « ≡ » . Он также носит название знака тождественного равенства.

Обычно запись тождества ничем не отличается от записи обыкновенного равенства. Знак тождества может быть применен для того, чтобы подчеркнуть, что перед нами не простое равенство, а тождество.

Примеры тождеств

Обратимся к примерам.

Числовые равенства 2 ≡ 2 и — 3 ≡ — 3 это примеры тождеств. Согласно определению, данному выше, любое верное числовое равенство по определению является тождеством, а приведенные равенства верные. Их также можно записать следующим образом 2 ≡ 2 и — 3 ≡ — 3 .

Равенства 2 + 3 = 5 и 7 − 1 = 2 · 3 также можно считать тождествами, так как они являются вернными. Здесь также допустима запись 2 + 3 ≡ 5 и 7 − 1 ≡ 2 · 3 .

Тождества могут содержать не только числа, но также и переменные.

Возьмем равенство 3 · ( x + 1 ) = 3 · x + 3 . Это равенство является верным при любом значении переменной x . Подтверждает сей факт распределительное свойство умножения относительно сложения. Это значит, что приведенное равенство является тождеством.

Возьмем тождество y · ( x − 1 ) ≡ ( x − 1 ) · x : x · y 2 : y . Рассмотрим область допустимых значений переменных x и y . Это любые числа, кроме нуля.

Возьмем равенства x + 1 = x − 1 , a + 2 · b = b + 2 · а и | x | = x . Существует ряд значений переменных, при которых эти равенства неверны. Например, при при x = 2 равенство x + 1 = x − 1 обращается в неверное равенство 2 + 1 = 2 − 1 . Да и вообще, равенство x + 1 = x − 1 не достигается ни при каких значениях переменной x .

Во втором случае равенство a + 2 · b = b + 2 ·a неверно в любых случаях, когда переменные a и b имеют различные значения. Возьмем a = 0 и b = 1 и получим неверное равенство 0 + 2 · 1 = 1 + 2 · 0 .

Равенство, в котором | x | — модуль переменной x , также не является тождеством, так как оно неверно для отрицательных значений x .

Это значит, что приведенные равенства не являются тождествами.

Если вспомнить тригонометрию и логарифмы, то здесь мы также можем найти примеры тождеств. Это основное логарифмическое тождество a log a b = b и основное тригонометрическое тождество вида sin 2 α + cos 2 α = 1 .

В математике мы постоянно имеем дело с тождествами. Делая записи действий, производимых с числами, мы работаем с тождествами. Тождествами являются записи свойств степеней, свойств корней и прочие.

Источник

Что необходимо знать ученику о тождествах в алгебре

Тождественные преобразования — основные понятия и определения

Перед началом работы с тождественными выражениями в математике необходимо разобраться что называют тождеством. Тождество — это равенство, верное при любых значениях переменных. Можно сказать, что тождеством является любое числовое равенство.

Тождества проходят в курсе алгебры за 7 класс. Однако с первыми представлениями о тождествах (равенствах) начинают знакомиться еще в начальной школе.

В алгебре используется понятие закона тождества как арифметического равенства чисел и выражений между собой, x ≡ x . Закон тождества иначе называется правило тождества, и оно гласит: «Всякое высказывание тождественно самому себе».

Справа и слева от знака равенства (=) располагаются одинаковые числа или выражения. Обычно запись тождества ничем не отличается от записи обыкновенного равенства.

Знак тождества ( ≡ ) может быть применен для того, чтобы подчеркнуть, что перед нами не простое равенство, а тождество.

Простейшими примерами тождеств являются: 2 + 3 = 5 , 2 = 2 , a 2 + a 2 = 2 a 2 .

Можно дать определение тождеству:

Тождественными выражениями в алгебре называют буквенные выражения, которые при любых числовых значениях этих букв (переменных) равны между собой.

Тождественным преобразованием называют получение таких выражений, значения которых равны исходным при любых допустимых значениях переменных.

Тождественное преобразование всегда предполагает замену данного выражения другим, сохраняя при этом их равенства.

Тождественные выражения в математике

Тождественные выражения в математике могут быть различных видов. Простейшими числовыми тождествами можно назвать любое равенство чисел, например 2 , 5 = 2 , 5 , 2 , 5 = 1 , 5 + 1 .

Более сложными тождественными выражениями являются буквенные, например a 2 * a 2 = a 4 , или a 2 + a 2 = 2 a 2 .

Также тождество образует равенство после нахождения корней уравнения, например уравнение x-3=7, при x=10 образует тождество.

В тригонометрии тождественными выражениями можно считать формулы приведения и основное тригонометрическое тождество.

Тождественные преобразования выражений

В курсе алгебры 7 класс при работе с тождественными выражениями учатся также доказывать тождества. Доказать тождество — значит установить, что при всех допустимых значениях переменных его левая и правая части представляют собой тождественно равные выражения. Чтобы доказать тождество, необходимо выполнить тождественные преобразования одной или обеих частей равенства.

Существует несколько способов тождественных преобразований выражений, приведем некоторые из них:

  1. Использование переместительного, распределительного и сочетательного законов для числовых выражений.
  2. Сокращение алгебраических дробей.
  3. Вынесение общего множителя за скобку и группировка.
  4. Работа с формулами сокращенного умножения.
  5. Тригонометрические формулы приведения и др.

Пояснения на примерах

Разберем несколько примеров решения тождеств.

Докажите тождество 25 * ( 5 + 10 ) = 25 * 5 + 25 * 10 .

Доказать это тождество можно, воспользовавшись распределительным свойством умножения вида:

a * ( b + c ) = a b + a c .

Применим наше свойство и получим, что 25 * ( 15 ) = 125 + 250 , 375=375.

Доказать тождество ( 2 a — 3 ) 2 — 4 a ( a + 1 ) = — 16 a + 9 .

Докажем это тождество, воспользовавшись формулами сокращенного умножения (квадрата разности) в левой части.

После раскрытия скобок получим выражение 4 a 2 — 12 a + 3 2 — 4 a 2 — 4 a .

Приведем в нем подобные, в итоге выражение примет вид:

— 12 a — 4 a + 9 = — 16 a + 9 .

Таким образом, выражение в левой части с помощью преобразования было приведено к выражению в правой части.

Доказать тождество 7 p — 35 p — 5 = 7 .

В левой части тождества выполним преобразование: вынесение общего множителя за скобки (в числителе дроби).

Получим дробь 7 * ( p — 35 ) p — 5 .

В числителе и знаменателе имеется одинаковое выражение, которое можно сократить.

В результате выражение в левой части будет равно 7.

Надо доказать основное тригонометрическое тождество sin α 2 + cos α 2 = 1 .

Для доказательства тождества вспомним, что синус угла — это отношение противолежащего катета к гипотенузе, а косинус — отношение прилежащего катета к гипотенузе.

Тогда выразим синус и косинус угла через стороны прямоугольного треугольника.

Пусть АВ — гипотенуза треугольника, а АС и СВ — его катеты.

Получим sin α 2 = B C 2 A B 2 , cos α 2 = A C 2 A B 2 .

Далее по теореме Пифагора — квадрат гипотенузы равен сумме квадратов катетов:

B C 2 + A C 2 = A B 2 .

Разделим теперь и правую часть тождества на гипотенузу A B 2 ,

получим: B C 2 / A B 2 + A C 2 / A B 2 = A B 2 / A B 2 , A B 2 A B 2 = 1 .

Докажем формулу приведения sin π + x = — sin x .

По формуле суммы тригонометрического угла распишем sin π + x = sin π * cos x + cos π * sin x = 0 * cos x + ( — 1 ) * sin x = — sin x .

Левая часть равна правой, значит тождество доказано.

Источник

Тождественные преобразования выражений, их виды

Тождественные преобразования представляют собой работу, которую мы проводим с числовыми и буквенными выражениями, а также с выражениями, которые содержат переменные. Все эти преобразования мы проводим для того, чтобы привести исходное выражение к такому виду, который будет удобен для решения задачи. Основные виды тождественных преобразований мы рассмотрим в этой теме.

Тождественное преобразование выражения. Что это такое?

Впервые встречаемся с понятием тождественных преобразованный мы на уроках алгебры в 7 классе. Тогда же мы впервые знакомимся с понятием тождественно равных выражений. Давайте разберемся с понятиями и определениями, чтобы облегчить усвоение темы.

Тождественное преобразование выражения – это действия, выполняемые с целью замены исходного выражения на выражение, которое будет тождественно равным исходному.

Часто это определение используется в сокращенном виде, в котором опускается слово «тождественное». Предполагается, что мы в любом случае проводим преобразование выражения таким образом, чтобы получить выражение, тождественное исходному, и это не требуется отдельно подчеркивать.

Проиллюстрируем данное определение примерами.

Если мы заменим выражение x + 3 − 2 на тождественно равное ему выражение x + 1 , то мы проведем при этом тождественное преобразование выражения x + 3 − 2 .

Замена выражения 2 · a 6 на выражение a 3 – это тождественное преобразование, тогда как замена выражения x на выражение x 2 не является тождественным преобразованием, так как выражения x и x 2 не являются тождественно равными.

Обращаем ваше внимание на форму записи выражений при проведении тождественных преобразований. Обычно мы записываем исходное и полученное в ходе преобразования выражения в виде равенства. Так, запись x + 1 + 2 = x + 3 означает, что выражение x + 1 + 2 было приведено к виду x + 3 .

Последовательное выполнение действий приводит нас к цепочке равенств, которая представляет собой несколько расположенных подряд тождественных преобразований. Так, запись x + 1 + 2 = x + 3 = 3 + x мы понимаем как последовательное проведение двух преобразований: сначала выражение x + 1 + 2 привели к виду x + 3 , а его – к виду 3 + x .

Тождественные преобразования и ОДЗ

Ряд выражений, которые мы начинаем изучать в 8 классе, имеют смысл не при любых значениях переменных. Проведение тождественных преобразований в этих случаях требует от нас внимания к области допустимых значений переменных (ОДЗ). Выполнение тождественных преобразований может оставлять ОДЗ неизменной или же сужать ее.

При выполнении перехода от выражения a + ( − b ) к выражению a − b область допустимых значений переменных a и b остается прежней.

Переход от выражения x к выражению x 2 x приводит к сужению области допустимых значений переменной x от множества всех действительных чисел до множества всех действительных чисел, из которого был исключен ноль.

Тождественное преобразование выражения x 2 x выражением х приводит к расширению области допустимых значений переменной x от множества всех действительных чисел за исключением нуля до множества всех действительных чисел.

Сужение или расширение области допустимых значений переменных при проведении тождественных преобразований имеет значение при решении задач, так как может повлиять на точность проведения вычислений и привести к появлению ошибок.

Основные тождественные преобразования

Давайте теперь посмотрим, какими бывают тождественные преобразования и как они выполняются. Выделим те виды тождественных преобразований, с которыми нам приходится иметь дело чаще всего, в группу основных.

Помимо основных тождественных преобразований существует ряд преобразований, которые относятся к выражениям конкретного вида. Для дробей это приемы сокращения и приведения к новому знаменателю. Для выражений с корнями и степенями все действия, которые выполняются на базе свойств корней и степеней. Для логарифмических выражений действия, которые проводятся на основе свойств логарифмов. Для тригонометрических выражений все действия с использованием тригонометрических формул. Все эти частные преобразования подробно разбираются в отдельных темах, которые можно найти на нашем ресурсе. В связи с этим в этой стстье мы на них останавливаться не будем.

Перейдем к рассмотрению основных тождественных преобразований.

Перестановка местами слагаемых, множителей

Начнем с перестановки слагаемых местами. С этим тождественным преобразованием мы имеем дело чаще всего. И основным правилом здесь можно считать следующее утверждение: в любой сумме перестановка слагаемых местами не отражается на результате.

Основано это правило на переместительном и сочетательном свойствах сложения. Эти свойства позволяют нам переставлять слагаемые местами и получать при этом выражения, которые тождественно равны исходным. Именно поэтому перестановка слагаемых местами в сумме является тождественным преобразованием.

У нас есть сумма трех слагаемых 3 + 5 + 7 . Если мы поменяем местами слагаемые 3 и 5 , то выражение примет вид 5 + 3 + 7 . Вариантов перестановки местами слагаемых в данном случае несколько. Все они приводят к получению выражений, тождественно равных исходному.

В качестве слагаемых в сумме могут выступать не только числа, но и выражения. Их точно так же, как и числа, можно переставлять местами, не влияя на конечный результат вычислений.

В сумме трех слагаемых 1 a + b , a 2 + 2 · a + 5 + a 7 · a 3 и — 12 · a вида 1 a + b + a 2 + 2 · a + 5 + a 7 · a 3 + ( — 12 ) · a слагаемые можно переставить, например, так ( — 12 ) · a + 1 a + b + a 2 + 2 · a + 5 + a 7 · a 3 . В свою очередь можно переставить местами слагаемые в знаменателе дроби 1 a + b , при этом дробь примет вид 1 b + a . А выражение под знаком корня a 2 + 2 · a + 5 тоже является суммой, в которой можно поменять местами слагаемые.

Точно так же, как и слагаемые, в исходных выражениях можно менять местами множители и получать тождественно верные уравнения. Проведение этого действия регулируется следующим правилом:

В произведении перестановка множителей местами не влияет на результат вычислений.

Основано это правило на переместительном и сочетательном свойствах умножения, которые подтверждают верность тождественного преобразования.

Произведение 3 · 5 · 7 перестановкой множителей можно представить в одном из следующих видов: 5 · 3 · 7 , 5 · 7 · 3 , 7 · 3 · 5 , 7 · 5 · 3 или 3 · 7 · 5 .

Перестановка множителей в произведении x + 1 · x 2 — x + 1 x даст x 2 — x + 1 x · x + 1

Раскрытие скобок

Скобки могут содержать записи числовых выражений и выражений с переменными. Эти выражения могут быть преобразованы в тождественно равные выражения, в которых скобок не будет вообще или их будет меньше, чем в исходных выражениях. Этот способ преобразования выражений называют раскрытием скобок.

Проведем действия со скобками в выражении вида 3 + x − 1 x для того, чтобы получить тождественно верное выражение 3 + x − 1 x .

Выражение 3 · x — 1 + — 1 + x 1 — x можно преобразовать в тождественно равное выражение без скобок 3 · x — 3 — 1 + x 1 — x .

Правила преобразования выражений со скобками мы подробно разобрали в теме «Раскрытие скобок», которая размещена на нашем ресурсе.

Группировка слагаемых, множителей

В случаях, когда мы имеем дело с тремя и большим количеством слагаемых, мы можем прибегнуть к такому виду тождественных преобразований как группировка слагаемых. Под этим способом преобразований подразумевают объединение нескольких слагаемых в группу путем их перестановки и заключения в скобки.

При проведении группировки слагаемые меняются местами таким образом, чтобы группируемые слагаемые оказались в записи выражения рядом. После этого их можно заключить в скобки.

Возьмем выражение 5 + 7 + 1 . Если мы сгруппируем первое слагаемое с третьим, то получим ( 5 + 1 ) + 7 .

Группировка множителей проводится аналогично группировке слагаемых.

В произведении 2 · 3 · 4 · 5 можно сгруппировать первый множитель с третьим, а второй – с четвертым, при этом придем к выражению ( 2 · 4 ) · ( 3 · 5 ) . А если бы мы сгруппировали первый, второй и четвертый множители, то получили бы выражение ( 2 · 3 · 5 ) · 4 .

Слагаемые и множители, которые группируются, могут быть представлены как простыми числами, так и выражениями. Правила группировки были подробно разобраны в теме «Группировка слагаемых и множителей».

Замена разностей суммами, частных произведениями и обратно

Замена разностей суммами стала возможна благодаря нашему знакомству с противоположными числами. Теперь вычитание из числа a числа b можно рассматривать как прибавление к числу a числа − b . Равенство a − b = a + ( − b ) можно считать справедливым и на его основе проводить замену разностей суммами.

Возьмем выражение 4 + 3 − 2 , в котором разность чисел 3 − 2 мы можем записать как сумму 3 + ( − 2 ) . Получим 4 + 3 + ( − 2 ) .

Все разности в выражении 5 + 2 · x − x 2 − 3 · x 3 − 0 , 2 можно заменить суммами как 5 + 2 · x + ( − x 2 ) + ( − 3 · x 3 ) + ( − 0 , 2 ) .

Мы можем переходить к суммам от любых разностей. Аналогично мы можем произвести обратную замену.

Замена деления на умножение на число, обратное делителю, становится возможным благодаря понятию взаимно обратных чисел. Это преобразование можно записать равенством a : b = a · ( b − 1 ) .

Это правило было положено в основу правила деления обыкновенных дробей.

Частное 1 2 : 3 5 можно заменить произведением вида 1 2 · 5 3 .

Точно также по аналогии деление может быть заменено умножением.

В случае с выражением 1 + 5 : x : ( x + 3 ) заменить деление на x можно на умножение на 1 x . Деление на x + 3 мы можем заменить умножением на 1 x + 3 . Преобразование позволяет нам получить выражение, тождественное исходному: 1 + 5 · 1 x · 1 x + 3 .

Замена умножения делением поводится по схеме a · b = a : ( b − 1 ) .

В выражении 5 · x x 2 + 1 — 3 умножение можно заменить делением как 5 : x 2 + 1 x — 3 .

Выполнение действий с числами

Выполнение действий с числами подчиняется правилу порядка выполнения действий. Сначала проводятся действия со степенями чисел и корнями из чисел. После этого мы заменяем логарифмы, тригонометрические и прочие функции на их значения. Затем выполняются действия в скобках. И затем уже можно проводить все остальные действия слева направо. Важно помнить, что умножение и деление проводят до сложения и вычитания.

Действия с числами позволяют преобразовать исходное выражение в тождественное равное ему.

Преобразуем выражение 3 · 2 3 — 1 · a + 4 · x 2 + 5 · x ,выполнив все возможные действия с числами.

Решение

Первым делом обратим внимание на степень 2 3 и корень 4 и вычислим их значения: 2 3 = 8 и 4 = 2 2 = 2 .

Подставим полученные значения в исходное выражение и получим: 3 · ( 8 — 1 ) · a + 2 · ( x 2 + 5 · x ) .

Теперь проведем действия в скобках: 8 − 1 = 7 . И перейдем к выражению 3 · 7 · a + 2 · ( x 2 + 5 · x ) .

Нам осталось выполнить умножение чисел 3 и 7 . Получаем: 21 · a + 2 · ( x 2 + 5 · x ) .

Ответ: 3 · 2 3 — 1 · a + 4 · x 2 + 5 · x = 21 · a + 2 · ( x 2 + 5 · x )

Действиям с числами могут предшествовать другие виды тождественных преобразований, таких, например, как группировка чисел или раскрытие скобок.

Возьмем выражение 3 + 2 · ( 6 : 3 ) · x · ( y 3 · 4 ) − 2 + 11 .

Решение

Первым делом проведем замену частного в скобках 6 : 3 на его значение 2 . Получим: 3 + 2 · 2 · x · ( y 3 · 4 ) − 2 + 11 .

Раскроем скобки: 3 + 2 · 2 · x · ( y 3 · 4 ) − 2 + 11 = 3 + 2 · 2 · x · y 3 · 4 − 2 + 11 .

Сгруппируем числовые множители в произведении, а также слагаемые, являющиеся числами: ( 3 − 2 + 11 ) + ( 2 · 2 · 4 ) · x · y 3 .

Выполним действия в скобках: ( 3 − 2 + 11 ) + ( 2 · 2 · 4 ) · x · y 3 = 12 + 16 · x · y 3

Ответ: 3 + 2 · ( 6 : 3 ) · x · ( y 3 · 4 ) − 2 + 11 = 12 + 16 · x · y 3

Если мы работаем с числовыми выражениями, то целью нашей работы будет нахождение значения выражения. Если же мы преобразуем выражения с переменными, то целью наших действий будет упрощение выражения.

Вынесение за скобки общего множителя

В тех случаях, когда слагаемые в выражении имеют одинаковый множитель, то мы можем вынести этот общий множитель за скобки. Для этого нам сначала необходимо представить исходное выражение как произведение общего множителя и выражения в скобках, которое состоит из исходных слагаемых без общего множителя.

В числовом выражении 2 · 7 + 2 · 3 мы можем вынести общий множитель 2 за скобки и получить тождественно верное выражение вида 2 · ( 7 + 3 ) .

Освежить в памяти правил вынесения общего множителя за скобки вы можете в соответствующем разделе нашего ресурса. В материале подробно рассмотрены правила вынесения общего множителя за скобки и приведены многочисленные примеры.

Приведение подобных слагаемых

Теперь перейдем к суммам, которые содержат подобные слагаемые. Тут возможно два варианта: суммы, содержащие одинаковые слагаемые, и суммы, слагаемые которых отличаются числовым коэффициентом. Действия с суммами, содержащими подобные слагаемые, носит название приведения подобных слагаемых. Проводится оно следующим образом: мы выносим общую буквенную часть за скобки и проводим вычисление суммы числовых коэффициентов в скобках.

Рассмотрим выражение 1 + 4 · x − 2 · x . Мы можем вынести буквенную часть x за скобки и получить выражение 1 + x · ( 4 − 2 ) . Проведем вычисление значения выражения в скобках и получим сумму вида 1 + x · 2 .

Замена чисел и выражений тождественно равными им выражениями

Числа и выражения, из которых составлено исходное выражение, можно заменять тождественно равными им выражениями. Такое преобразование исходного выражения приводит к тождественно равному ему выражению.

Рассмотрим выражение 3 + x . Здесь число 3 может быть заменено суммой 1 + 2 . Так мы получим выражение ( 1 + 2 ) + x , тождественно равное исходному.

Рассмотрим выражение 1 + a 5 , в котором степень a 5 мы можем заменить тождественно равным ей произведением, например, вида a · a 4 . Это нам даст выражение 1 + a · a 4 .

Выполненное преобразование искусственное. Оно имеет смысл лишь при подготовке к проведению других преобразований.

Рассмотрим преобразование суммы 4 · x 3 + 2 · x 2 . Здесь слагаемое 4 · x 3 мы можем представить как произведение 2 · x 2 · 2 · x . В результате исходное выражение принимает вид 2 · x 2 · 2 · x + 2 · x 2 . Теперь мы можем выделить общий множитель 2 · x 2 и вынести его за скобки: 2 · x 2 · ( 2 · x + 1 ) .

Прибавление и вычитание одного и того же числа

Прибавление и одновременное вычитание одного и того же числа или выражения являетс искусственным приемом преобразования выражений.

Рассмотрим выражение x 2 + 2 · x . Мы можем прибавить или отнять от него единицу, что позволит нам в последующем провести еще одно тождественное преобразование — выделить квадрат двучлена: x 2 + 2 · x = x 2 + 2 · x + 1 − 1 = ( x + 1 ) 2 − 1 .

Источник

Оцените статью