- Как работает токовая петля 4-20 мА
- Унифицированные аналоговые сигналы в системах автоматики
- Унифицированные аналоговые сигналы
- Унифицированный сигнал напряжения 0-10 В
- Управление сигналом 0-10 В
- «Токовая петля»: унифицированный аналоговый сигнал 4-20 мА
- Управление сигналом 4-20 мА
- Активный и пассивный аналоговый выход 4-20 мА
- Нормирующий преобразователь
Как работает токовая петля 4-20 мА
«Токовая петля» начала применяться в качестве интерфейса передачи данных еще в 50-е годы. Сначала рабочий ток интерфейса составлял 60 мА, а позже, начиная с 1962 года, широкое распространение в телетайпе получил 20 миллиамперный интерфейс токовой петли.
В 80-е, когда началось обширное внедрение в технологическое оборудование разнообразных датчиков, средств автоматики и исполнительных устройств, интерфейс «токовая петля» сузил диапазон своих рабочих токов, — он стал составлять от 4 до 20 мА.
Дальнейшее распространение «токовой петли» стало замедляться начиная с 1983 года, с появлением интерфейсного стандарта RS-485, и на сегодняшний день «токовая петля» почти нигде в новом оборудовании как таковая не применяется.
Передатчик «токовой петли» отличается от передатчика интерфейса RS-485 тем, что в нем используется источник тока, а не источник напряжения.
Ток, в отличие от напряжения, двигаясь из источника по цепи не меняет своего текущего значения в зависимости от параметров нагрузки. Вот почему «токовая петля» не чувствительна ни к сопротивлению кабеля, ни к сопротивлению нагрузки, ни даже к ЭДС индуктивной помехи.
Кроме того ток петли не зависит от напряжения питания самого источника тока, а может изменяться лишь вследствие утечек через кабель, которые обычно пренебрежимо малы. Данная особенность токовой петли полностью определяет способы ее применения.
Стоит отметить, что ЭДС емкостной наводки приложена здесь параллельно источнику тока, и для ослабления ее паразитного действия применяют экранирование.
По этой причине линией передачи сигнала обычно выступает экранированная витая пара, которая, работая совместно с дифференциальным приемником, сама ослабляет синфазную и индуктивную помехи.
На стороне приема сигнала, ток токовой петли при помощи калиброванного резистора преобразуется в напряжение. И при токе в 20 мА получается напряжение из стандартного ряда 2,5 В; 5 В; 10 В; — достаточно лишь использовать резистор с сопротивлением соответственно 125, 250 или 500 Ом.
Первый и главный недостаток интерфейса «токовая петля» заключается в его низком быстродействии, ограниченном скоростью зарядки емкости самого передающего кабеля от упомянутого выше источника тока, расположенного на передающей стороне.
Так, при использовании кабеля длиной в 2 км, с погонной емкостью 75 пФ/м, его емкость составит 150 нФ, а это значит что для зарядки данной емкости до 5 вольт при токе 20 мА потребуется 38 мкс, что соответствует скорости передачи данных 4,5 кбит/с.
Ниже приведена графическая зависимость максимально доступной скорости передачи данных по «токовой петле» от длины применяемого кабеля при различных уровнях искажений (дрожания) и при разных напряжениях, оценка проводилась так же как для интерфейса RS-485.
Еще один недостаток «токовой петли» заключается в отсутствии определенного стандарта на конструктивное исполнение разъемов и на электрические параметры кабелей, что тоже ограничивает практическое применение данного интерфейса. Но справедливости ради можно отметить, что фактически общеприняты диапазоны от 0 до 20 мА и от 4 до 20 мА. Диапазон 0 — 60 мА применяется значительно реже.
Наиболее перспективные разработки, требующие применения интерфейса «токовая петля», в большинстве своем используют сегодня только 4. 20 мА интерфейс, позволяющий легко диагностировать обрыв линии. Кроме того, «токовая петля» может быть цифровой или аналоговой, в зависимости от требований разработчика (об этом — далее).
Практически низкая скорость передачи данных по «токовой петле» любого типа (аналоговой или цифровой) позволяет использовать ее одновременно с несколькими приемниками соединенными последовательно, причем согласование длинной линии не потребуется.
Аналоговая версия «токовой петли»
Аналоговая «токовая петля» нашла применение в технике, где необходимо например передавать сигналы от датчиков к контроллерам или между контроллерами и исполнительными устройствами. Здесь токовая петля обеспечивает некоторые преимущества.
Прежде всего диапазон варьирования измеряемой величины будучи приведен к стандартному диапазону позволяет изменять компоненты системы. Примечательна и возможность высокоточной (не более +-0,05% погрешности) передачи сигнала на значительное расстояние. Наконец, стандарт «токовая петля» поддерживается большинством поставщиков устройств промышленной автоматизации.
Токовая петля 4. 20 мА имеет минимальный ток 4 мА в качестве начала отсчета сигнала. Таким образом при обрыве кабеля ток будет равен нулю. Тогда как при использовании токовой петли 0. 20 мА диагностировать обрыв кабеля будет сложнее, ибо 0 мА может просто обозначать минимальное значение передаваемого сигнала. Еще одно достоинство диапазона 4. 20 мА заключается в том, что уже при уровне 4 мА можно без проблем подводить питание к датчику.
Ниже приведены две схемы аналоговой токовой петли. В первом варианте источник питания встроен в передатчик, тогда как во втором варианте источник питания внешний.
Встроенный источник питания удобен в плане монтажа, а внешний позволяет варьировать его параметры в зависимости от назначения и условий работы устройства, с которым применяется токовая петля.
Принцип действия токовой петли одинаков для обеих схем. Операционный усилитель имеет в идеале бесконечно большое внутреннее сопротивление и нулевой ток входов, и значит напряжение между его входами также изначально равно нулю.
Таким образом, ток через резистор в передатчике будет зависеть только от величины входного напряжения и будет равен току во всей петле, при этом он не будет зависеть от сопротивления нагрузки. Напряжение на входе приемника может быть поэтому легко определено.
Схема с операционным усилителем отличается тем преимуществом, что позволяет калибровать передатчик без необходимости подключать к нему кабель с приемником, ибо погрешность, вносимая приемником и кабелем, очень незначительна.
Напряжение источника выбирается исходя из потребности транзистора передатчика для его нормальной работы в активном режиме, а также с условием компенсации падения напряжения на проводах, на самом транзисторе, и на резисторах.
Допустим, резисторы имеют сопротивления по 500 Ом, а кабель — 100 Ом. Тогда для получения тока в 20 мА потребуется напряжение источника 22 В. Выбирают ближайшее стандартное — 24 В. Избыток мощности от запаса по напряжению будет как раз рассеян на транзисторе.
Обратите внимание, что на обеих схемах изображена гальваническая развязка между передающим каскадом и входом передатчика. Это нужно для того чтобы избежать любых паразитных связей между передатчиком и приемником.
В качестве примера передатчика для построения аналоговой токовой петли можно привести готовое изделие NL-4AO с четырьмя аналоговыми каналами вывода для связи компьютера с исполнительным устройством посредством протокола «токовая петля» 4. 20 мА или 0. 20 мА.
Связь модуля с компьютером осуществляется по протоколу RS-485. Устройство калибруется по току для компенсации погрешностей преобразования и исполняет подаваемые с компьютера команды. Калибровочные коэффициенты хранятся в памяти устройства. Цифровые данные преобразуются в аналоговые при помощи ЦАП.
Цифровая версия «токовой петли»
Цифровая токовая петля работает, как правило, в режиме 0. 20 мА, поскольку цифровой сигнал проще воспроизвести именно в таком виде. Точность логических уровней здесь не так важна, поэтому источник тока петли может обладать не очень большим внутренним сопротивлением и сравнительно низкой точностью.
На приведенной схеме при напряжении питания 24 В на входе приемника падает 0,8 В, значит при сопротивлении резистора 1,2 кОм ток будет равен 20 мА. Падением напряжения на кабеле, даже при его сопротивлении в 10% от общего сопротивления петли, можно пренебречь, как и падением напряжения на оптроне. Практически в данных условиях можно считать передатчик источником тока.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Источник
Унифицированные аналоговые сигналы в системах автоматики
При автоматизации технологических процессов используются различные датчики и исполнительные устройства. И те и другие так или иначе связаны с контроллерами или модулями ввода/вывода, которые получают от датчиков измеренные значения физических параметров и управляют исполнительными устройствами.
Представьте, что все устройства, присоединяемые к контроллеру имели бы различные интерфейсы — тогда производителям пришлось бы «плодить» огромное количество модулей ввода-вывода, а для того, чтобы заменить, например, неисправный датчик, нужно было бы искать точно такой же.
Именно поэтому, в системах промышленной автоматики принято унифицировать интерфейсы различных устройств.
В этой статье мы расскажем об унифицированных аналоговых сигналах. Поехали!
Унифицированные аналоговые сигналы
С аналоговыми сигналами мы имеем дело при измерении любых физических величин (температуры, влажности, давления и т.д.), а так же при непрерывном управлении исполнительными устройствами (регулирование скорости вращения двигателя с помощью преобразователя частоты; управление температурой с помощью нагревателя и т.д.).
Во всех перечисленных и им подобных случаях используются аналоговые (непрерывные) сигналы.
В контроллерном оборудовании в подавляющем большинстве случаев используются два типа аналоговых сигналов: токовый 4-20 мА и сигнал напряжения 0-10 В.
Унифицированный сигнал напряжения 0-10 В
При использовании этого типа сигнала для получения информации с датчика весь его (датчика) диапазон делится на диапазон напряжения 0-10 В. Например, датчик температуры имеет диапазоны -10…+70 °С. Тогда при -10 °С на выходе датчика будет 0 В, а при +70 °С — 10 В. Все промежуточные значения находятся из пропорции.
Это же верно для любого другого устройства. Например, если аналоговый выход частотного преобразователя настроен на передачу текущей скорости вращения двигателя — тогда 0 В у него на выходе означает, что двигатель остановлен, а 10 В, что двигатель крутится на максимальной частоте.
Управление сигналом 0-10 В
С помощью унифицированного сигнала напряжения можно не только получать данные о физических величинах, но и управлять устройствами. Например, можно привести трёхходовой клапан в нужное положение, изменить скорость вращения электродвигателя через частотный преобразователь или мощность нагревателя.
Возьмём для примера электродвигатель, частотой вращения которого управляет частотный преобразователь.
Частоту вращения двигателя задаёт контроллер сигналом 0-10 В, приходящим на аналоговый вход частотника.Частота вращения двигателя двигателя может быть от 0 до 50 Гц. Тогда, если в соответствии с алгоритмом контроллер собирается раскрутить двигатель на 25 Гц, он должен подать на вход частотника 5В.
«Токовая петля»: унифицированный аналоговый сигнал 4-20 мА
Аналоговый сигнал 4-20 мА (ещё называют «токовая петля») так же как сигнал напряжения 0-10 В используется в автоматике для получения информации от датчиков и управления различными устройствами.
По сравнению с сигналом 0-10 В сигнал 4-20 мА имеет ряд преимуществ:
- Во-первых, токовый сигнал можно передать на большие расстояния в сравнении с сигналом 0-10 В, в котором происходит падение напряжения на длинной линии, обусловленное сопротивлением проводников.
- Во-вторых, легко диагностировать обрыв линии, т.к. рабочий диапазон сигнала начинается от 4 мА. Поэтому если на входе 0 мА — значит на линии обрыв.
Управление сигналом 4-20 мА
Управление различными устройствами с помощью токового сигнала ничем не отличается от управления с помощью сигнала напряжения. Только в данном случае нужен уже источник не напряжения, а тока.
Если устройство имеет управляющий вход 4-20 мА, то таким устройством может управлять контроллер или другое интеллектуальное устройство, имеющее соответствующий выход.
Например, мы хотим плавно открывать вентиль, имеющий электропривод со входом 4-20 мА. Если подать на вход сигнал тока 4 мА, тогда вентиль будет полностью закрыт, а если подать 20 мА — полностью открыт.
Активный и пассивный аналоговый выход 4-20 мА
Зачастую аналоговый выход датчика, контроллера или другого устройства — пассивный, то есть не может являться источником тока без внешнего питания. Поэтому при проектировании схемы автоматики нужно внимательно изучить характеристики аналоговых выходов используемых устройств, и если они пассивные — добавить в схему внешний источник питания для пропитки токовой петли.
На рисунке представлена схема подключения датчика с выходом 4-20 мА к измерителю-регулятору с соответствующим входом. Поскольку выход датчика пассивный — требуется его пропитка внешним блоком питания.
Нормирующий преобразователь
При измерении физической величины (температуры, влажности, загазованности, pH и др.) датчики преобразуют её значение в ток, напряжение, сопротивление, ёмкость и т.д. (в зависимости от принципа работы датчика). Для того, чтобы привести выходной сигнал датчика к унифицированному сигналу используют нормирующие преобразователи.
Нормирующий преобразователь — устройство, приводящее сигнал первичного преобразователя к унифицированному сигналу тока или напряжения.
Так выглядит датчик температуры с нормирующим преобразователем:
Источник