Что значит спектр 1 порядка

Что значит спектр 1 порядка

В состав видимого света входят монохроматические волны с различными значениями длин. В излучении нагретых тел (нить лампы накаливания) длины волн непрерывно заполняют весь диапазон видимого света. Такое излучение называется белым светом . Свет, испускаемый, например, газоразрядными лампами и многими другими источниками, содержит в своем составе отдельные монохроматические составляющие с некоторыми выделенными значениями длин волн. Совокупность монохроматических компонент в излучении называется спектром . Белый свет имеет непрерывный спектр , излучение источников, в которых свет испускается атомами вещества, имеет дискретный спектр . Приборы, с помощью которых исследуются спектры излучения источников, называются спектральными приборами .

Для разложения излучения в спектр в простейшем спектральном приборе используется призма (рис. 3.10.1). Действие призмы основано на явлении дисперсии , то есть зависимости показателя преломления вещества от длины волны света .

Рисунок 3.10.1.

Щель , на которую падает исследуемое излучение, находится в фокальной плоскости линзы . Эта часть прибора называется коллиматором . Выходящий из линзы параллельный пучок света падает на призму . Вследствие дисперсии свет разных длин волн выходит из призмы под разными углами. В фокальной плоскости линзы располагается экран или фотопластинка, на которой фокусируется излучение. В результате в разных местах экрана возникает изображение входной щели в свете разных длин волн. У всех прозрачных твердых веществ (стекло, кварц), из которых изготовляются призмы, показатель преломления в диапазоне видимого света убывает с увеличением длины волны , поэтому призма наиболее сильно отклоняет от первоначального направления синие и фиолетовые лучи и наименее – красные. Монотонно убывающая зависимость называется нормальной дисперсией .

Первый опыт по разложению белого света в спектр был осуществлен И. Ньютоном (1672 г.).

В спектральных приборах высокого класса вместо призм применяются дифракционные решетки . Решетки представляют собой периодические структуры, выгравированные специальной делительной машиной на поверхности стеклянной или металлической пластинки (рис. 3.10.2). У хороших решеток параллельные друг другу штрихи имеют длину порядка , а на каждый миллиметр приходится до 2000 штрихов. При этом общая длина решетки достигает Изготовление таких решеток требует применения самых высоких технологий. На практике применяются также и более грубые решетки с штрихами на миллиметр, нанесенными на поверхность прозрачной пленки. В качестве дифракционной решетки может быть использован кусочек компакт-диска или даже осколок граммофонной пластинки.

Рисунок 3.10.2.

Простейшая дифракционная решетка состоит из прозрачных участков (щелей), разделенных непрозрачными промежутками. На решетку с помощью коллиматора направляется параллельный пучок исследуемого света. Наблюдение ведется в фокальной плоскости линзы, установленной за решеткой (рис. 3.10.3).

Рисунок 3.10.3.

В каждой точке на экране в фокальной плоскости линзы соберутся лучи, которые до линзы были параллельны между собой и распространялись под определенным углом к направлению падающей волны. Колебание в точке является результатом интерференции вторичных волн, приходящих в эту точку от разных щелей. Для того, чтобы в точке наблюдался интерференционный максимум, разность хода между волнами, испущенными соседними щелями, должна быть равна целому числу длин волн:

Здесь – период решетки, – целое число, которое называется порядком дифракционного максимума . В тех точках экрана, для которых это условие выполнено, располагаются так называемые главные максимумы дифракционной картины.

В фокальной плоскости линзы расстояние от максимума нулевого порядка () до максимума -го порядка при малых углах дифракции равно

где – фокусное расстояние.

Следует обратить внимание на то, что в каждой точке фокальной плоскости линзы происходит интерференция волн, приходящих в эту точку от щелей решетки. Это так называемая многоволновая (или «многолучевая») интерференция. Распределение световой энергии в плоскости наблюдения резко отличается от того, которое получается в обычных «двухлучевых» интерференционных схемах. В главные максимумы все волны приходят в фазе, потому амплитуда колебаний возрастает в раз, а интенсивность в раз по сравнению с колебанием, которое возбуждает волна только от одной щели.

При смещении из главных максимумов интенсивность колебаний быстро спадает. Чтобы волн погасили друг друга, разность фаз должна измениться на , а не на π, как при интерференции двух волн. На рис. 3.10.4 изображена векторная диаграмма колебаний, возбуждаемых волнами от всех щелей при условии, что сдвиг фаз волн от соседних щелей равен , а соответствующая разность хода равна . Вектора, изображающие колебаний, образуют в этом случае замкнутый многоугольник. Таким образом, при переходе из главного максимума в соседний минимум разность хода должна измениться на . Из этого условия можно оценить угловую полуширину главных максимумов:

Здесь для простоты полагается, что дифракционные углы достаточно малы. Следовательно,

где – полный размер решетки. Это соотношение находится в полном согласии с теорией дифракции в параллельных лучах, согласно которой дифракционная расходимость параллельного пучка лучей равна отношению длины волны к поперечному размеру препятствия.

Рисунок 3.10.4.

Можно сделать важный вывод: при дифракции света на решетке главные максимумы чрезвычайно узки. Рис. 3.10.5 дает представление о том, как меняется острота главных максимумов при увеличении числа щелей решетки.

Рисунок 3.10.5.

Как следует из формулы дифракционной решетки, положение главных максимумов (кроме нулевого) зависит от длины волны . Поэтому решетка способна разлагать излучение в спектр, то есть она является спектральным прибором . Если на решетку падает немонохроматическое излучение, то в каждом порядке дифракции (т. е. при каждом значении ) возникает спектр исследуемого излучения, причем фиолетовая часть спектра располагается ближе к максимуму нулевого порядка. На рис. 3.10.6 изображены спектры различных порядков для белого света. Максимум нулевого порядка остается неокрашенным.

Рисунок 3.10.6.

С помощью дифракционной решетки можно производить очень точные измерения длины волны. Если период решетки известен, то определение длины сводится к измерению угла , соответствующего направлению на выбранную линию в спектре -го порядка. На практике обычно используются спектры 1-го или 2-го порядков.

Если в спектре исследуемого излучения имеются две спектральные линии с длинами волн и , то решетка в каждом спектральном порядке (кроме ) может отделить одну волну от другой.

Одной из важнейших характеристик дифракционной решетки является ее разрешающая способность , характеризующая возможность разделения с помощью данной решетки двух близких спектральных линий с длинами волн и . Спектральной разрешающей способностью называется отношение длины волны к минимальному возможному значению Δλ, то есть

Разрешающая способность спектральных приборов, и, в частности, дифракционной решетки, также как и предельное разрешение оптических инструментов, создающих изображение объектов (телескоп, микроскоп) определяется волновой природой света. Принято считать, что две близкие линии в спектре -го порядка различимы, если главный максимум для длины волны отстоит от главного максимума для длины волны не менее, чем на полуширину главного максимума, т. е. на . По существу, это критерий Релея, примененный к спектральному прибору. Из формулы решетки следует:

где – угловое расстояние между двумя главными максимумами в спектре -го порядка для двух близких спектральных линий с разницей длин волн . Для простоты здесь предполагается, что углы дифракции малы (). Приравнивая и , получаем оценку разрешающей силы решетки:

Таким образом, предельное разрешение дифракционной решетки зависит только от порядка спектра и от числа периодов решетки .

Пусть решетка имеет период , ее длина . Тогда, (это хорошая решетка). В спектре 2-го порядка разрешающая способность решетки оказывается равной . Это означает, что минимально разрешимый интервал длин волн в зеленой области спектра () равен . В этих же условиях предельное разрешение решетки с и оказалось бы равным .

Источник

Спектроскопические свойства дифракционных решеток

Введение

Дифракционные решетки — очень полезный и популярный инструмент в спектроскопии. Благодаря свойству преломлять свет под различными углами, можно получать монохроматические пучки от обычных источников белого cвета. Связь между углами падения, дифракции и длиной волны описывается с помощью общеизвестного уравнения дифракционной решетки, из которого путем простых алгебраических операций можно найти рассеяние, разрешение и область свободной дисперсии конкретного элемента.

Уравнение решетки

Пучок света при попадании на решетку подвергается дифракции, то есть раскладывается на несколько частей. Направление каждой компоненты зависит от длины волны и угла, под которым излучение попадает на решетку. Также имеет значение профиль и глубина штрихов, нанесенных на решетку.

Уравнение решетки полностью описывает свойства прибора, его можно записать как:

(1)

где α — угол падения, βm — угол дифракции (за положительное направление принимается угол против часовой стрелки, за отрицательное — по часовой), m — порядок дифракции (любое целое число), d — период решетки или частота штрихов (обычно измеряется как число штрихов на миллиметр, в исключительных случаях приводится пересчет в нанометры), λ — длина волны падающего излучения.

Порядок дифракции

Нулевой порядок дифракции означает равенство угла падения α углу дифракции β0, и все уравнение преобразуется в известный закон отражения. Это решение всегда возможно, но на практике отраженный луч не особенно важен. Отраженное излучение — причина потерь излучения при прохождении через решетку. В монохроматорах, спектрометрах и спектрографах в основном используется порядок дифракции m = -1. Решетки с малой частотой штрихов (соответствует большим периодам) создают больше порядков дифракции. Дифракционные решетки могут использоваться как делители монохроматических пучков одного или двух источников.

Угловая дисперсия характеризует величину изменения угла дифракции за единицу изменения длины волны. Измеряется как угловое расстояние между смежными длинами волн. Выражение угловой дисперсии определяется как производная левой части уравнения решетки при фиксированном угле падения:

(2)

Повысить дисперсию возможно с помощью увеличения частоты штрихов либо с помощью решетки с крупно нарезанными штрихами. В основном используются решетки с мелкими штрихами, поскольку для практических применений обычно необходим более широкий спектр.

Волновая дисперсия выходной щели спектроскопического прибора обычно определяется как обратная линейная дисперсия в нано- или миллиметре. Фокусное расстояние прибора обозначается как f, и тогда общая формула обратной линейной дисперсии принимает вид:

(3)

Габариты оптической системы зависят в том числе и от фокусного расстояния. Наиболее компактными считаются голографические дифракционные решетки с высокой частотой штрихов.

Рассеяние света также важная характеристика дифракционных решеток. Данная характеристика определяет предел обнаружения.

Голографические решетки отличаются меньшим светорассеянием и полным отсутствием «ложных» спектров на картине, поскольку метод голографической записи дает более точные промежутки между интерференционными полосами (штрихами). Однако если используются источники рассеянного света, светорассеяние голографической решетки повысится.

Область свободной дисперсии

Из уравнения дифракционной решетки можно вывести следующую закономерность: длина волны падающего света λ соответствует первому порядку дифракции, λ/2 – второму порядку дифракции, λ/3 – третьему и т. д. Очень часто при использовании решеток нужно каким-либо образом ограничивать порядки дифракции: например, с помощью полосового фильтра, либо используя ограниченный диапазон длин волн источника света или приемника.

Область свободной дисперсии дифракционных решеток, или свободная спектральная область – это максимальный интервал длин волн, который можно наблюдать при использовании данной дифракционной решетки (и в конкретном порядке дифракции) без переналожения соседних порядков спектра. Если λ1 — нижний предел (наименьшая длина волны), λ2 — верхний предел (наибольшая длина волны), тогда область свободной дисперсии выражается с помощью уравнения:

(4)

Очевидно, свободная спектральная область уменьшается пропорционально росту порядка дифракции. Так, например, порядок дифракции решетки m = -1 соответствует области свободной дисперсии величиной λ2/2. Это значит, что в диапазоне от λ1 до 2λ1 не будет наблюдаться переналожения спектров до второго порядка.

Разрешающая способность

Спектральное разрешение дифракционной решетки Δλ определяется как расстояние между двумя пиками спектральных полос, которые только могут быть обнаружены приемником как раздельные. Из теории известно, что дифракционные решетки имеют предел разрешения, обусловленный свойствами конкретного прибора и источника.

Разрешающая способность дифракционной решетки есть безразмерное число R. Краткая формула имеет вид:

(5)

где m – порядок дифракции, N – общее число штрихов на рабочей поверхности решетки. Как видно из формулы, существует предел произведения порядка дифракции и количества штрихов.

Теоретическое значение разрешающей способности решетки всегда несколько выше реального, поскольку существуют дефекты поверхности решетки и профиля пучка.

В качестве расчетного примера рассмотрим 110-миллиметровую решетку с частотой 1800 штрихов/мм. В первом порядке дифракции теоретическая разрешающая способность равна 198000, спектральное разрешение составляет 0.03 нм при длине волны 500 нм.

Эффективность дифракционной решетки

Абсолютная эффективность определяется как величина падающего потока, который дифрагирует в заданном порядке дифракции. Относительная эффективность связана с коэффициентом отражения зеркала, покрытого тем же составом, что и решетка. Следует отметить, что относительная эффективность всегда выше, чем абсолютная.

В большинстве приложений используется только один порядок дифракции, где «идеальная» решетка обеспечивала бы стопроцентную абсолютную эффективность. Однако эффективность реальной решетки, как правило, является сложной функцией длины волны и поляризации падающего света, также зависит от частоты штрихов, профиля и материала решетки. В случае излучения с поперечной магнитной поляризацией, когда вектор электрического поля перпендикулярен штрихам решетки, можно наблюдать быстрые скачки эффективности даже при небольшом изменении длины волны. Этот феномен был впервые обнаружен Р. В. Вудом в 1902 году, поэтому скачки эффективности дифракционной решетки обычно называют аномалиями Вуда.

Синусоидальные решетки

Синусоидальный профиль штрихов характерен для голографического метода изготовления дифракционных решеток. Кривая эффективности голографической решетки в отличие от решетки, изготовленной традиционным методом нарезки, более гладкая и однородная.

Эффективность рассчитывается для конкретной спектральной области, аналогично рассчитывается глубина штрихов. Большую глубину нарезки имеют решетки с высокой частотой штрихов. Когда расстояние между канавками менее, чем в 1.25 раз меньше рабочей длины волны, существуют только порядки дифракции -1 и 0, а если решетка имеет соответствующий профиль штрихов, большая часть дифрагированного света переходит в порядок -1. В этой области голографические дифракционные решетки дают более 50% абсолютной эффективности.

Отражательная дифракционная решетка

Отражательные дифракционные решетки предназначены для конкретной длины волны, рабочий диапазон варьируется от угла решетки. Абсолютная эффективность резко снижается в диапазонах, отличных от рабочего, при этом в рабочей области может составлять примерно 70%.

Перестраивание длины волны лазерного источника

Голографические решетки часто используются для перестраивания длины волны лазера. Решетка выполняет роль селективного торцевого зеркала в резонаторе. При использовании дифракционной решетки для перестраивания длины волны лазерного излучения применяются две основные конфигурации – схема Литтроу и схема скользящего падения (также известна как схема Литтмана).

Конфигурация Литтроу

Решетка установлена так, чтобы свет желаемой длины волны дифрагировал в обратном направлении вдоль падающего излучения, а длина волны распознается вращением решетки. Внутри резонатора обычно используется ахроматическая линза, которая расширяет лазерный пучок, чтобы заполнить как можно большую площадь решетки. В качестве выходного излучения принимается излучение нулевого порядка дифракции. Недостатком этой конфигурации является то, что направление пучка меняется вместе с поворотом решетки.

Конфигурация Литтмана

Решетка фиксируется под углом падения примерно 90 ° , а длина волны настраивается вращением специального настраивающего зеркала. Дополнительная линза для расширения пучка не требуется, и поэтому можно использовать меньшую решетку. Однако больший угол падения подразумевает, что габаритная ширина решетки должна быть значительно больше, чем протяженность штрихов.

Эффективность схемы Литтмана может быть очень высокой, в особенности если используется входное излучение с поляризацией, перпендикулярной штрихам решетки (поперечной магнитной поляризацией). В случае поперечной электрической поляризации эффективность заметно снижается.

Компрессия импульса

Когда короткий лазерный импульс передается через оптическое волокно, импульс как бы растягивается или «чирпируется» из-за нелинейных эффектов (явление так называемой фазовой автомодуляции).

Например, импульс падает на решетку с нормальной оптической дисперсией, то есть длинноволновая часть излучения проходит через оптическую систему быстрее, чем коротковолновая. Используя пару решеток, можно найти такое расположение, чтобы длинноволновая часть импульса проходила более длинный путь. В оптимальном случае на выходе образуется ограниченный импульс. Пара решеток не только компенсирует уширение импульса в волокне, но и сокращает его растяжение. Сжатие может достигать 90 раз.

Усиление чирпированного импульса

Очень короткие импульсы (

100 фс) генерируются лазерами с синхронизацией мод. Эти импульсы имеют слишком низкую пиковую мощность. Техника усиления чирпированных импульсов позволяет достичь пиковых мощностей порядка ТВт.

Усилитель представляет собой лазерный кристалл внутри резонатора. Чтобы избежать влияния нелинейных эффектов, разрушающих кристаллы, входной импульс расширяется во времени, что приводит к снижению пиковой мощности. Далее чирпированный импульс снова усиливается и затем сжимается для достижения высокой мощности. Нужно также отметить, что длительность выходного импульса в результате практически равна длительности входного.

Расширение и сжатие

Как при растяжении, так и при сжатии используются пары решеток, расположенные в субтрактивном дисперсионном режиме: то есть так, что угловая дисперсия первой решетки вычитается второй решеткой. Два параллельных пучка с разными длинами волн, падающие на первую решетку, остаются параллельными и после прохождения сквозь вторую решетку, несмотря на разницу пройденных расстояний.

Пара решеток, расположенная параллельно, будет вводить отрицательную дисперсию групповой скорости, то есть длинноволновые части излучения приходят позже, чем коротковолновые.

Для достижения положительной дисперсионной задержки необходима более сложная схема, в этом случае система афокальных линз (телескоп) размещается между решетками. Телескоп регулирует знак углов так, чтобы пучки падали на вторую решетку под тем же углом, что и на первую.

Расширитель и компрессор пучка обычно используются в двухпроходном режиме. Из преимуществ этого режима: удвоение дисперсии. Все длинноволновые компоненты пучка становятся коллинеарными, а не линейными, как это происходило бы в режиме одного прохода.

Инструменты для спектроскопии

Стандартный набор для спектроскопических исследований в основном состоит из входной апертуры, коллиматора, рассеивающего элемента, фокусирующих оптических компонентов, в отдельных случаях набор дополняется выходной апертурой. Свет, попадающий на входную щель, в коллиматоре (обычно вогнутое зеркало) преобразуется в параллельный пучок.

Рассеивающий элемент (решетка) отклоняет излучение под углом, зависящим от длины волны. Рассеянный свет фокусируется на плоскости изображения, где и формируется спектр (серия монохроматических изображений входной щели).

Монохроматоры

В монохроматоре установлена выходная апертура, с помощью которой передается очень узкая часть спектра. Входная и выходная щели жестко закреплены, сканирование спектра осуществляется вращением решетки. Итак, решетка работает с постоянным угловым отклонением между падающим и рассеянным светом. Данная схема реализована в большинстве монохроматоров типа Черни-Тернера, Эберта и Литтроу.

Волоконная оптика

Голографические решетки отлично подходят для приложений волоконной оптики благодаря компактным размерам, высокой частоте штрихов, эффективности и угловой дисперсии.

Рамановская спектроскопия и эксперименты по рассеянию лазерного излучения

В исследованиях, связанных с рассеянием лазерного излучения (рамановская спектроскопия и рассеяние Томсона), где требуется диагностика плазмы, требования к решетке очень высоки. Образец освещается лазерным излучением, резонансное рассеяние приводит к появлению слабых спектральных линий, близких к основной полосе. В рамановской спектроскопии интенсивность спектральной картины наиболее низкая, что и является основной проблемой данного метода.

Требуемое разрешение достигается с помощью крупногабаритных приборов с большим фокусным расстоянием, при этом все оптические поверхности должны иметь высочайшее качество. При работе в непосредственной близости от интенсивной спектральной линии аберрации оптической системы и дифракция Фраунгофера от упоров апертуры могут провоцировать значительное светорассеяние.

Решетки Spectrogon с низким уровнем светорассеяния изготавливаются на подложках высокого качества, потому такая решетка практически не будет вносить аберрации. Подобные решетки часто устанавливаются в масс-спектрометрах с двойной или тройной фокусировкой для уменьшения рассеянного света.

Голографические решетки становятся распространенным предпочтением. Нарезные решетки, несмотря на высокое качество, все равно порождают ложные спектры, сильно искажающие исследуемые сигналы.

Спектроскопия поглощения

Абсорбционная спектроскопия является еще одним приложением, в котором низкий уровень светорассеяния голографических решеток имеет большое преимущество. Уровень рассеянного света напрямую связан с диапазоном поглощения прибора, и чем меньше рассеянного света, тем более точный спектр поглощения можно получить.

Источник света в абсорбционной спектроскопии обычно представляет собой широкополосный источник, и поэтому рассеянный свет будет состоять из сплошного спектра. Каждый компонент длины волны падающего света порождает спектр рассеяния, в центре которого находится фактическая длина волны. Результирующий рассеянный свет является суммой всех длинноволновых компонентов.

Компания INSCIENCE помогает своим заказчикам решать любые вопросы и потребности по продукции Spectrogon на территории РФ

Источник

Читайте также:  Что значит возместить баллами покупку по халве
Оцените статью