- Уравнение касательной к графику функции
- Уравнение касательной
- Уравнение касательной и уравнение нормали к графику функции
- Как получить уравнение касательной и уравнение нормали
- Решаем задачи вместе
- Решить задачи самостоятельно, а затем посмотреть решения
- Снова решаем задачи вместе
- Уравнение касательной
- Геометрический смысл производной в точке и касательной
- Готовые работы на аналогичную тему
- Уравнение касательной через производную
- Уравнение касательной для параболы
- Расположение касательной в зависимости от значения её углового коэффициента
Уравнение касательной к графику функции
Пусть дана функция f , которая в некоторой точке x 0 имеет конечную производную f ( x 0). Тогда прямая, проходящая через точку ( x 0; f ( x 0)), имеющая угловой коэффициент f ’( x 0), называется .
А что будет, если производная в точке x 0 не существует? Возможны два варианта:
- Касательная к графику тоже не существует. Классический пример — функция y = | x | в точке (0; 0).
- Касательная становится вертикальной. Это верно, к примеру, для функции y = arcsin x в точке (1; π /2).
Уравнение касательной
Всякая невертикальная прямая задается уравнением вида y = kx + b , где k — угловой коэффициент. Касательная — не исключение, и чтобы составить ее уравнение в некоторой точке x 0, достаточно знать значение функции и производной в этой точке.
Итак, пусть дана функция y = f ( x ), которая имеет производную y = f ’( x ) на отрезке [ a ; b ]. Тогда в любой точке x 0 ∈ ( a ; b ) к графику этой функции можно провести касательную, которая задается уравнением:
Здесь f ’( x 0) — значение производной в точке x 0, а f ( x 0) — значение самой функции.
Задача. Дана функция y = x 3 . Составить уравнение касательной к графику этой функции в точке x 0 = 2.
Уравнение касательной: y = f ’( x 0) · ( x − x 0) + f ( x 0). Точка x 0 = 2 нам дана, а вот значения f ( x 0) и f ’( x 0) придется вычислять.
Для начала найдем значение функции. Тут все легко: f ( x 0) = f (2) = 2 3 = 8;
Теперь найдем производную: f ’( x ) = ( x 3 )’ = 3 x 2 ;
Подставляем в производную x 0 = 2: f ’( x 0) = f ’(2) = 3 · 2 2 = 12;
Итого получаем: y = 12 · ( x − 2) + 8 = 12 x − 24 + 8 = 12 x − 16.
Это и есть уравнение касательной.
Задача. Составить уравнение касательной к графику функции f ( x ) = 2sin x + 5 в точке x 0 = π /2.
В этот раз не будем подробно расписывать каждое действие — укажем лишь ключевые шаги. Имеем:
f ( x 0) = f ( π /2) = 2sin ( π /2) + 5 = 2 + 5 = 7;
f ’( x ) = (2sin x + 5)’ = 2cos x ;
f ’( x 0) = f ’( π /2) = 2cos ( π /2) = 0;
y = 0 · ( x − π /2) + 7 ⇒ y = 7
В последнем случае прямая оказалась горизонтальной, т.к. ее угловой коэффициент k = 0. Ничего страшного в этом нет — просто мы наткнулись на точку экстремума.
Источник
Уравнение касательной и уравнение нормали к графику функции
Как получить уравнение касательной и уравнение нормали
Касательная — это прямая, которая касается графика функции в одной точке и все точки которой находятся на наименьшем расстоянии от графика функции. Поэтому касательная проходит касательно графика функции под определённым углом и не могут проходить через точку касания несколько касательных под разными углами. Уравнения касательной и уравнения нормали к графику функции составляются с помощью производной.
Уравнение касательной выводится из уравнения прямой.
Выведем уравнение касательной, а затем — уравнение нормали к графику функции.
В нём k — угловой коэффициент.
Отсюда получаем следующую запись:
Значение производной f ‘(x 0 ) функции y = f(x) в точке x 0 равно угловому коэффициенту k = tgφ касательной к графику функции, проведённой через точку M 0 (x 0 , y 0 ) , где y 0 = f(x 0 ) . В этом состоит геометрический смысл производной.
Таким образом, можем заменить k на f ‘(x 0 ) и получить следующее уравнение касательной к графику функции:
В задачах на составление уравнения касательной к графику функции (а мы уже скоро к ним перейдём) требуется привести получившееся по вышеприведённой формуле уравнение к уравнению прямой в общем виде. Для этого нужно все буквы и числа перенести в левую часть уравнения, а в правой части оставить ноль.
Теперь об уравнении нормали. Нормаль — это прямая, проходящая через точку касания к графику функции перпендикулярно касательной. Уравнение нормали:
Переходим к примерам. Для решений потребуется таблица производных (откроется в новом окне).
Для разминки первый же пример прелагается решить самостоятельно, а затем посмотреть решение. Есть все основания надеяться, что для наших читателей эта задача не будет «холодным душем».
Пример 0. Составить уравнение касательной и уравнение нормали к графику функции в точке M (1, 1) .
Решаем задачи вместе
Пример 1. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания
.
Решение. Найдём ординату точки касания:
.
Найдём производную функции:
.
Найдём значение производной в точке касания, то есть угловой коэффициент касательной:
.
Теперь у нас есть всё, что требуется подставить в приведённую в теоретической справке запись, чтобы получить уравнение касательной. Получаем
В этом примере нам повезло: угловой коэффициент оказался равным нулю, поэтому отдельно приводить уравнение к общему виду не понадобилось. Теперь можем составить и уравнение нормали:
На рисунке ниже: график функции бордового цвета, касательная зелёного цвета, нормаль оранжевого цвета.
Следующий пример — тоже не сложный: функция, как и в предыдущем, также представляет собой многочлен, но угловой коэффициен не будет равен нулю, поэтому добавится ещё один шаг — приведение уравнения к общему виду.
Пример 2. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания
.
Решение. Найдём ординату точки касания:
.
Найдём производную функции:
.
Найдём значение производной в точке касания, то есть угловой коэффициент касательной:
.
Подставляем все полученные данные в «формулу-болванку» и получаем уравнение касательной:
Приводим уравнение к общему виду (все буквы и числа, отличные от нуля, собираем в левой части, а в правой оставляем ноль):
Составляем уравнение нормали:
Пример 3. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания
.
Решение. Найдём ординату точки касания:
.
Найдём производную функции:
.
Найдём значение производной в точке касания, то есть угловой коэффициент касательной:
.
Находим уравнение касательной:
Перед тем, как привести уравнение к общему виду, нужно его немного «причесать»: умножить почленно на 4. Делаем это и приводим уравнение к общему виду:
Составляем уравнение нормали:
Решить задачи самостоятельно, а затем посмотреть решения
Пример 4. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания
.
Пример 5. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания
.
Снова решаем задачи вместе
Пример 6. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания
.
Решение. Найдём ординату точки касания:
.
Найдём производную функции:
.
Найдём значение производной в точке касания, то есть угловой коэффициент касательной:
.
Получаем уравнение касательной:
Приводим уравнение к общему виду:
Составляем уравнение нормали:
Распространённая ошибка при составлении уравнений касательной и нормали — не заметить, что функция, данная в примере, — сложная и вычислять её производную как производную простой функции. Следующие примеры — уже со сложными функциями (соответствующий урок откроется в новом окне).
Пример 7. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания
.
Решение. Найдём ординату точки касания:
.
Внимание! Данная функция — сложная, так как аргумент тангенса ( 2x ) сам является функцией. Поэтому найдём производную функции как производную сложной функции:
.
Найдём значение производной в точке касания, то есть угловой коэффициент касательной:
.
Получаем уравнение касательной:
Приводим уравнение к общему виду:
Составляем уравнение нормали:
Пример 8. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания
.
Решение. Найдём ординату точки касания:
.
Как и в предыдущем примере, данная функция — сложная, так как степень () сама является функцией. Поэтому найдём производную функции как производную сложной функции:
.
Найдём значение производной в точке касания, то есть угловой коэффициент касательной:
.
Источник
Уравнение касательной
Вы будете перенаправлены на Автор24
Вспомним определение секущей для лучшего понимания что такое касательная.
Секущей называют прямую, пересекающую график кривой в двух точках одновременно.
Касательной прямой к графику кривой называют прямую, проходящую через некую точку кривой и совпадающую с ней в этой точке так, что это прямая лишь касается кривой.
Другое и более ёмкое определение касательной дал Лейбниц.
Лейбниц касательной называл прямую, проведённую через пару точек на рассматриваемой кривой, не совпадающих между собой, но находящихся бесконечно близко друг к другу. Из определения Лейбница видно, что касательная является частным случаем секущей.
Геометрический смысл производной в точке и касательной
Рассмотрим определение касательной подробнее.
Рисунок 1. Касательная и секущая к графику. Автор24 — интернет-биржа студенческих работ
Пусть дана некая кривая $L$, а на ней выбрана произвольная точка $M$. Возьмём ещё одну точку $P$, расположенную также на этой кривой и проведём через точки $M$ и $P$ секущую. Теперь поставим точку $P$ ещё ближе к точке $M$ и проведём новую секущую.
Проделаем так ещё несколько раз, каждый раз получая новую секущую, как бы поворачивающуюся вокруг точки $M$.
В момент, когда очередная точка $P$ находится бесконечно близко к точке $M$, секущая как бы достигает своего предельного положения, в котором по сути она лишь касается графика.
Готовые работы на аналогичную тему
Это положение называется касательной к графику кривой $L$ в точке $M$.
Уравнение касательной через производную
Теперь узнаем, как найти уравнение касательной.
Рассмотрим некую функцию $y(x)$ и выберем на ней точку $M$ с координатами $(a; y(a))$.
Сделаем приращение к аргументу $x$ в этой точке, равное $Δx$ и рассмотрим точку $P$ на графике функции с абсциссой, равной $x=x+Δx$. Значение функции в этой точке будет равно $y(a+ Δx)$. Проведём через точки $M$ и $P$ секущую.
Как мы помним из курса математики, угловой коэффициент равен тангенсу угла прямой с осью абсцисс. Это значит, что угловой коэффициент рассматриваемой нами секущей равен приращению функции $y$ к приращению функции $x$:
Теперь рассмотрим приращение $Δx$ как бесконечно малую величину. В этом случае точка $P$ с координатами $(a; y(a)+ Δy)$ будет приближаться к точке $M$, стремясь к ней. Следовательно, угловой коэффициент нашей секущей, которая в данном случае является касательной, равен пределу:
Воспользуемся формулой $(1)$ для секущей:
Данный предел также носит название производной функции $y=f(x)$ в точке $x$ и обозначается как $y’(x)$.
Геометрический смысл производной состоит в том, что при условии возможности проведения касательной в точке $x$ к графику исследуемой кривой, такой, что эта касательная не параллельна оси $OX$, значение производной является угловым коэффициентом проведённой касательной в этой точке.
Иначе данное утверждение можно записать как
То есть, при составлении уравнения касательной через производную, производная функции является угловым коэффициентом.
Заметим на всякий случай, что сама функция $y=f(x)$ и её производная $y’(x)$ — две разные функции, равные между собой в точке $x$.
Таким образом, в общем виде уравнение касательной будет иметь вид:
где $f(x_0)$ — значение функции в точке $x_0$, а $f’(x_0)$ — её производная.
Уравнение касательной для параболы
Рисунок 2. Уравнение касательной к графику параболической функции. Автор24 — интернет-биржа студенческих работ
Рассмотрим получение уравнения касательной к графику функции на параболе $y=ax^2$ в точке $M$ c координатами $(x; y)$.
Придадим этой точке приращение по оси $OX$, равное $Δx$, приращение по оси $y$ тогда составит $y+Δy=a(x+ Δx)^2$. Точку с координатами $(x+ Δx; y+Δy)$ назовём $P$.
Теперь чтобы определить тангенс угла секущей $MP$с осью абсцисс, рассмотрим прямоугольный треугольник $\triangle MNP$. В нём катет $MN$ равен $Δx$, а второй катет $Δy$ — это приращение ординаты, равное $Δy=a(2x \cdot Δx + Δx^2)$.
Выразим используя эти данные тангенс угла $φ$.
$\mathrm
Теперь для получения углового коэффициента рассмотрим это отношение при бесконечно малой величине $Δx$. Как известно, в этом случае мы имеем дело с пределом:
Благодаря такому соотношению становится легко построить касательную к параболе (рис. 2, б).
Для этого достаточно рассмотреть треугольник $\triangle MPT$, так как отрезок $TP$ будет равен:
То есть, для того чтобы получить касательную, необходимо соединить середину отрезка $OP$ с точкой $M$.
Расположение касательной в зависимости от значения её углового коэффициента
Рассмотрим несколько различных случаев значения углового коэффициента для касательной.
Если её угловой коэффициент, то есть, тангенс, равен нулю, то касательная расположена параллельно оси $OX$, а сама прямая принимает вид $y=b$.
Если тангенс положительный, то касательная образует острый угол с осью абсцисс, что значит, что вместе с ростом $x$ растёт и $y$.
В случае если тангенс отрицательный, прямая образует тупой угол с горизонтальной осью, а это значит, что с увеличением значения икса происходит уменьшение значения игрека.
Есть ещё один случай расположения касательной — параллельно оси $OY$, в этом случае её уравнение описывается как $x=c$, где $c$ — некая константа.
Другим числом, определяющим положение касательной, является число $b$, являющееся свободным членом в уравнении прямой $y=kx+b$. Число $b$ характеризует значение функции $y(x)$ в точке её пересечения с осью ординат, иначе говоря, оно есть не что иное, как значение уравнения касательной к графику функции в точке $x=0$.
Составить уравнение касательной в точке $x=3$ для графика функции $y(x)=2x^2+3x-6$.
Сначала найдём значение функции в точке $x=3$:
$y=2 \cdot 3^2 +3 \cdot 3 – 6 = 21$
Теперь определим значение производной для исследуемой функции:
Теперь получим значение углового коэффициента, для этого подставим $x=3$ в производную:
$y’(x)=4 \cdot 3 + 3 = 15$
Подставим это значение в формулу для касательной $(2)$:
$y=15x-24$ — уравнение касательной получено.
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 14 03 2021
Источник