- Сопротивление тела человека
- Сопротивление тела человека
- Электрическое сопротивление тела человека
- Сопротивление тела человека
- Сопротивление человека
- Что такое электрическое сопротивление тела человека
- Значение полного сопротивления тел людей
- Состояние кожи
- Место приложения электротока
- Уровень сопротивляемости тканей
- Значения показателей тока
- Физиологические факторы и показатели окружающей среды
- Видео
- Что значит сопротивление тела
Сопротивление тела человека
Сопротивление тела человека
Электрическое сопротивление различных тканей тела человека не одинаково. Например, при токе частотой 50 Гц удельное сопротивление равно: кости – 107 Ом∙м, кожа сухая – 105 Ом∙м, крови – 1,7 Ом∙м. При сухой, чистой и неповрежденной коже сопротивление тела, измеренное, при напряжении 15-20 В переменного тока (50 Гц), колеблется в пределах от 1 до 10 кОм, а иногда и в более широких пределах.
Сопротивление кожи, а следовательно сопротивление тела в целом резко уменьшается при повреждении ее рогового слоя, наличие влаги на ее поверхности, интенсивном потовыделении и загрязнении.
Электрическое сопротивление тела человека зависит так же от места приложения электродов к телу, значений тока, проходящего через человека, и приложенного к телу напряжения, рода и частоты тока, площади электродов, длительности прохождения тока через человека и некоторых других факторов. Увеличение тока приводит к снижению сопротивления соответствующих участков кожи, за счет местного нагрева кожи и действия на центральную нервную систему (усиливается приток крови, повышается потоотделение). С ростом напряжения сопротивление тела уменьшается в десятки раз. При больших напряжениях приближается к наименьшему пределу 300 Ом. В России в качестве расчетных значений сопротивление человека равно 1000 Ом при напряжении, приложенном к телу, равное 50 В и выше и сопротивление человека равное 6000 Ом при приложенном напряжении 36 В. Опыты показывают, что сопротивление тела человека постоянному току больше, чем переменному любой частоты. Разница в значениях сопротивлений постоянному и переменному (50 Гц) током особенно велико при малых напряжениях – до 10 В. С ростом приложенного напряжения эта разница уменьшается и начиная с 40-80 В сопротивление тела человека как постоянному, так и переменному току промышленной частоты становится практически одинаковым.
На значение сопротивления тела человека влияют и другие факторы, хотя в значительно меньшей степени. Пол и возраст. У женщин, как правило, сопротивление тела меньше, чем у мужчин, а у детей – меньше, чем у взрослых, у молодых людей меньше, чем у пожилых. Объясняется это, очевидно, тем, что у одних людей кожа тоньше и нежнее, у других — толще и грубее.
Физическое раздражение снижает сопротивление тела на 20-25%.
Повышенная температура окружающего воздуха (30-450 С) или тепловое облучение человека, вызывает некоторое понижение сопротивление тела.
Источник
Электрическое сопротивление тела человека
Факторы, влияющие на сопротивление тела человека.
Электрическая энергия плотно вошла в нашу жизнь, и заставляет людей приспосабливаться для выживания среди повышенного электрического напряжения, которое производят все без исключения электрические приборы. Поражение человека в электрическом поле сегодня малораспространенное явление, так как допуск к электроустановкам с мощным электрическим полем, ограничивается специалистами, имеющими специальное образование. К бытовым электрическим травмам относятся поражения электрическим током различной силы и напряжения. Такие поражения происходят по неосторожности, во время использования приборов с оголенными электрическими проводами, во время пожаров и во время природных катаклизмов.
Сопротивление тела человека
- Сопротивление тела человека не является постоянной величиной и может приниматься только условно. Электрическое сопротивление зависит от следующих факторов:
- от места приложения электрического напряжения к телу человека;
- от психического состояния, в котором находится человек (например, когда человек волнуется – он сильно потеет, соответственно влажность его кожного покрова увеличивается, что вызывает уменьшение электрического сопротивления тела);
- электрическое сопротивление человеческого тела меняется со временем, и может зависеть от болезни человека.
- Условно, электрическое сопротивление тела человека при частоте электрического поля 50Гц, принимается равное значению 1мОм.
- Безопасным принято считать электрический ток силой 1мА, а ожоги и другие повреждения тканей человека, начинаются при силе тока 100мА.
- Самое большое сопротивление электрическому току происходит на поверхности кожного покрова человека, например, сухая кожа способна создавать сопротивление равное 10000мОм, однако повышение влажности окружающей среды, значительно снижает такое сопротивление.
- Безопасным принято считать электрическое напряжение менее 12В.
Приспособления, применяемые для повышения электрического сопротивления человеческого тела.
Лучшим способом увеличить электрическое сопротивление человеческого тела, является исключение контакта поверхности тела с токопроводящими поверхностями. Добиваются ограничение контактов, с помощью средств персональной защиты, среди которых – использование диэлектрических предметов: резиновых ковриков, резиновых перчаток и ботов изоляционных. Кроме того, изоляции подвергаются все поверхности инструментов, за которые берется человек во время работы с электрическим током.
Источник
Сопротивление человека
При касании человеком находящихся под напряжением проводов, токопроводящих поверхностей, клемм источников питания через его тело начинает протекать электрический ток. Величина силы тока, проходящего при этом через организм, определяется, прежде всего, такой характеристикой, как электрическое сопротивление человека. Зависящее от большого количества факторов (от наличия влаги на коже до эмоционального состояния человека) оно влияет на безопасность электромонтажных и ремонтных работ, производимых на находящемся под нагрузкой оборудовании, линиях электропередач. О том, что собой представляет сопротивление обычного человеческого тела, от чего зависит, как изменяется, пойдет речь в данной статье.
Что такое электрическое сопротивление тела человека
Сопротивление тела человека – способность различных тканей, внутренних органов противостоять протеканию электрического тока. Как и в проводниках, суть данного явления заключается в том, что проходящий по материи поток свободных электронов сталкивается с атомами и молекулами вещества, снижает свою скорость и плотность. Следствие таких происходящих на молекулярном уровне процессов – снижение силы проходящего по тканям, внутренним органам организма тока, что существенно уменьшает причиняемый потоком электронов вред.
Измеряется данная характеристика в таких единицах, как кило и мегаомы (сокращенно кОм, мОм, соответственно).
На заметку. Чтобы узнать, какое у тела человека значение сопротивления в омах, используют такой прибор, как мультиметр. Процесс измерения достаточно прост и безопасен: ручку переключения диапазонов устанавливают в положение для измерения сопротивления до 2000 кОм («2000к»), зажимают кончик каждого щупа между указательным и большим пальцами левой и правой руки. Появляющееся через 2-3 секунды на дисплее значение фиксируют при помощи кнопки «hold»(«удержать»).
Электрическое сопротивление человеческого тела складывается из отдельных значений данной характеристики для таких тканей и органов, как:
- Кожа;
- Подкожная жировая прослойка;
- Кровеносные сосуды;
- Кровь и лимфа;
- Костная и хрящевая ткань;
- Мышцы;
- Костный мозг;
- Органы различных систем организма (пищеварительной, дыхательной, сердечно-сосудистой и т.д.).
Самое большое сопротивление имеет кожа, точнее эпидермис – состоящий из ороговевших клеток внешний слой. Содержащий мало жидкости он очень слабо проводит ток. Расположенный под эпидермисом внутренний слой кожи, называемый дермой, имеет электропроводность значительно больше, чем наружные ороговевшие клетки.
Сопротивляемость содержащих много жидкости крови, лимфы, костного мозга, а также различных внутренних органов самая низкая. Промежуточное положение по величине данной характеристики занимает костная и хрящевая ткань.
Важно! Принято считать, что электрическое сопротивление человеческого тела переменному однофазному бытовому току должно быть равным 1 кОм. При воздействии постоянного 20-24-х вольтного тока величина данной характеристики должна составлять от 3 до 100 кОм.
На данных нормативах основан расчет максимально безопасной силы – количества электронов, проходящих через ткани человеческого организма за единицу времени без причинения ему вреда.
Значение полного сопротивления тел людей
Сопротивляемость человеческого тела электрическому току непостоянна. Основными влияющими на ее величину факторами являются состояние кожных покровов, вольт-амперные характеристики тока, физиологические особенности организма, параметры окружающей среды, содержание в воздухе пылевидных частиц с высокой электропроводимостью.
Состояние кожи
Самым высоким значением сопротивления обладает сухая и чистая кожа. При появлении на ней капельной влаги, пота, частиц металлической или угольной пыли электропроводность увеличивается. Обусловлено это тем, что вода и обильный пот способствуют удалению с кожи жировой пленки, тем самым увеличивая ее электропроводность.
Также увеличивают электропроводность кожи при нарушении ее целостности участки с различными ссадинами, порезами, гематомами, мозолями, кожными сыпями, термическими и химическими ожогами, они имеют достаточно низкое сопротивление, из-за чего более подвержены действию электротока.
Место приложения электротока
Сопротивляемость организма протеканию по нему потока заряженных частиц зависит от того, в каком месте тело соприкасается с токопроводящей поверхностью, находящимся под напряжением проводом. Небольшим электрическим сопротивлением характеризуются такие участки тела с тонким верхним слоем кожи, как:
- Большая часть лица;
- Шея;
- Внешняя поверхность предплечий;
- Тыльная часть кистей;
- Подмышки.
При контакте данных участков с находящимися под напряжением поверхностями, оголенными проводниками сила протекающего по телу тока может, как нарушать нормальный обмен веществ и работу внутренних органов, так и приводить к летальному исходу.
Уровень сопротивляемости тканей
Самой большой сопротивляемостью протеканию тока отличаются сухая и неповрежденная кожа, ногтевая ткань. Наибольшей электропроводностью и, следовательно, низким сопротивлением характеризуются различные содержащиеся в организме жидкости: кровь, лимфа, костный мозг.
Значения показателей тока
На сопротивляемость организма влияют такие характеристики электрического тока, как:
- Мощность – проходящий через организм ток с большим значением мощности активизирует кровообращение, тем самым сильно снижая сопротивление тела.
- Частота – зависимость сопротивляемости тела от значения частоты протекающего по нему тока такова: переменный промышленный либо бытовой ток уменьшает сопротивление человеческого тела в разы сильнее, чем обладающий такими же вольт-амперными характеристиками постоянный.
Физиологические факторы и показатели окружающей среды
Основными физиологическими факторами, существенно влияющими на сопротивление тела, являются такие:
- Пол – женский организм более восприимчив к электротравмам, чем мужской;
- Возраст – способность тела пожилого человека или ребенка сопротивляться протекающему по нему току не такая высокая, как у возрастной категории от 16-18 до 50 лет.
- Болезни и ослабленное состояние организма – больному или ослабленному организму преодолевать действие тока значительно труднее, нежели здоровому.
Значительно уменьшают сопротивляемость тела к протеканию по нему тока высокая температура воздуха и большое содержание в нем капельной влаги.
Важно! Также электропроводность человеческого тела может зависеть от наличия в воздухе мелких взвешенных частиц угольной или металлической пыли. Этот факт советуют принимать во внимание всем работающим в условиях шахт и токарных мастерских электрикам.
Таким образом, знание того, сколько составляет сопротивление человеческого тела ом, что на него влияет, позволяет принять действенные меры, способные повысить электробезопасность работ, производимых на силовых установках и линиях электропередач, находящихся под напряжением. Померить данную характеристику тела можно с помощью обычного мультиметра, при условии наличия у него соответствующего диапазона для измерения электрического сопротивления.
Видео
Источник
Что значит сопротивление тела
При попадании человека под электрическое напряжение, через его тело начинает течь электрический ток, и величина этого тока зависит не только от величины приложенного напряжения, но и от сопротивления тела человека. Между тем, сопротивление тела человека — величина отнюдь не постоянная, ее значение зависит от многих факторов: от состояния человека на момент контакта (психического и физического), от параметров замкнутой цепи, от внешних условий среды, в которой человек на момент удара находится.
Тело человека состоит из различных тканей, и каждый вид тканей обладает своим сопротивлением. Так например, сухожилия, кожа, жировая ткань, хрящи и кости имеют удельное сопротивление порядка 3 — 20 кОм/м. Кровь, мышцы, лимфа, головной и спинной мозг — всего от 0,5 до 1 Ом/м. Из всех этих тканей наибольшим сопротивлением отличается кожа, поэтому именно кожа в значительной степени определяет сопротивление человеческого тела электрическому току.
Человеческая кожа имеет сложную структуру. Ее наружный слой — эпидермис — включает в себя несколько структурных частей: наружный роговой слой, который не содержит ни нервов, ни кровеносных сосудов, от того и обладает наибольшим сопротивлением, и другие слои, сопротивление которых значительно меньше рогового слоя. Дальше идет дерма — внутренний слой, сопротивление которого также сильно меньше, а значит именно сопротивление рогового слоя имеет решающее значение в полном сопротивлении кожи.
На сопротивление кожи влияет ее состояние. Если кожа сухая и чистая, не имеет повреждений, то ее сопротивление лежит в пределах от 10 до 100 кОм. Если же на коже есть порезы, царапины, микротравмы, они способны сильно снизить сопротивление тела человека до сопротивления лишь внутренних тканей. Очевидно, наличие на коже вышеназванных повреждений делает поражение электрическим током более опасным. Загрязненная и влажная кожа также имеет сопротивление более низкое.
Общее сопротивление человеческого тела, попавшего под напряжение, можно представить состоящим из трех сопротивлений, включенных последовательно: два слоя эпидермиса и одно — сопротивление дермы и внутренних тканей. Таким образом, внутренние ткани служат вместе с приложенными электродами как бы обкладками конденсатора, а эпидермис — диэлектриком.
В результате, если снаружи к телу приложены электроды, то получается цепь из активного сопротивления внутренних тканей и почти емкостного сопротивления эпидермиса. То есть можно сказать, что речь идет о диэлектрической проницаемости от 100 до 200, и об удельном сопротивлении от 10 до 100 кОм/м в цепи, состоящей из конденсатора и резистора.
Внутренние ткани имеют сопротивление активное Rв с небольшой емкостной составляющей, которая почти не зависит ни от площади электродов, ни от частоты, и находится в пределах от 500 до 700 Ом.
Но оно зависит от протяженности и поперечного сечения участков тела, и от удельного сопротивления внутренних органов. То есть в эквивалентном виде общее сопротивление Zт тела человека можно представить так:
При малом сопротивлении тела человека емкостная составляющая утрачивает значение:
Итак, электрическое сопротивление тела человека зависит от следующих пяти факторов:
- От общего психологического и физиологического состояния (индивидуальные особенности);
- От пола — от толщины кожи (у мужчин сопротивление выше, чем у женщин);
- От возраста — от грубости кожи (у взрослых сопротивление выше, чем у детей);
- От внешних условий (температура, давление, влажность, плотность);
- От общего состояния кожи (раны, грязь, увлажненность и т. д.);
- От внешних раздражителей (внезапные удар, укол, свет или звук), способных снизить сопротивление на 20 — 50 % за несколько минут.
Легко видеть, что электрическое сопротивление человеческого тела не постоянно и не линейно, однако для расчетов его принимают равным 1 кОм. Тем не менее, сопротивление тела человека зависит и от приложенного напряжения, поскольку в момент поражения током может оказаться, что цепь включает в себя еще и поверхность пола, грунт, обувь, одежду и т. д. Ток тогда будет определять не только сопротивление собственно тела человека, но и схема его включения в цепь.
Двухфазное прикосновение
При двухфазном прикосновении человек стоит на изолированном основании, касаясь одновременно двух фаз трехфазной сети, либо двух проводников однофазной сети переменного или постоянного тока. В этом случае ток потечет через руки и через жизненно важные органы, что весьма опасно, и еще опаснее, если замыкание происходит по пути рука — голова. При таком прикосновении человек может попасть либо под линейное межфазное напряжение, либо под полное рабочее напряжение электроустановки.
Если человек прикоснулся открытыми частями тела, то сопротивление определяется сопротивлением тела, сопротивлением кожи, если же произошло соприкосновение с полюсами через одежду, то в схему добавляется последовательно сопротивление одежды.
Можно сравнить эти два варианта. Сопротивление сухой одежды — от 10 до 15 кОм, а для влажной — от 0,5 до 1,5 кОм. Очевидно, сопротивление одежды так или иначе ограничивает ток через тело человека, хотя и падает в 10 — 30 раз в случае если одежда влажная.
При сухой одежде удар ощутится в сильном дрожании от пальцев до запястья, это 20мА при 220 вольтах. Если же одежда сырая, то при 140мА руки можно будет лишь с определенными усилиями оторвать от мест контакта. Сопротивление обуви и пола здесь не учитываются, поскольку в цепь они не включены.
Однофазное или однополюсное прикосновение
Человек стоит на земле, и только одной частью тела прикоснулся к электроустановке под напряжением, причем потенциал электроустановки отличается от потенциала земли или другой опорной поверхности. В этом случае человек попадает под напряжение относительно земли, и ток через тело будет током замыкания на землю.
Путь тока по петле голова — ноги или рука — ноги, при том через жизненно важные органы. В цепь окажутся включены сопротивления: тела, одежды, обуви, опоры. Сопротивления обуви и опоры включены между собой параллельно.
В зависимости от материала подошвы, от того влажная ли она или сухая, сопротивление обуви будет разным. Немаловажную роль играет и материал пола (опорной поверхности):
- Влажная кожаная подошва обладает сопротивлением 500 Ом, сухая — 100 кОм;
- Влажная резиновая подошва — 1,5 кОм, сухая резиновая подошва — 500 кОм;
- Металлический пол — от 0 (сухой) до 10 Ом (влажный);
- Земля сухая — 20 кОм, влажная — 800 Ом;
- Бетон сухой — 2 МОм, влажный бетон — 900 Ом;
- Линолеум сухой — 1,5 МОм, линолеум влажный — 50 кОм;
- Камень сухой — 8,5 кОм, камень влажный — 5 кОм;
- Снег или лед — от 300 Ом до 2 МОм;
- Песок сухой — 8 кОм, песок влажный — 1,6 кОм;
- Чернозем сухой — 160 Ом, влажный чернозем — 50 Ом.
Как видно, сопротивления опоры и обуви играют важную роль, и часто во много раз превосходят сопротивление тела человека, особенно в сухом состоянии, что может порой спасти жизнь.
При прикосновении к корпусу установки, который по какой-то причине оказался под напряжением, если заземления нет, то весь ток пойдет через тело. Если заземление присутствует, то основная часть тока пойдет через землю, а через тело — лишь малая часть, это представляет меньшую опасность для жизни.
Шаговое напряжение
Если человек стоит на земле неподалеку от заземлителя, и по грунту протекает ток, то частично этот ток может потечь через ноги по телу человека — по петле нога — нога, то есть человек попадет под шаговое напряжение. Образуется последовательная цепь, состоящая из сопротивлений опоры, обуви и тела. Сопротивления обуви и опоры играют здесь решающую роль, и способны в сухом виде принять на себя большее напряжение, чем примет голое тело.
Ранее ЭлектроВести писали, что г руппа ученных из Университета Уханя и Калифорнийского университета в Лос-Анджелесе разработали универсальную, эффективную и недорогую технологию утилизации тепла за счет гидрогелевой пленки, которая способна не только быстро снижать температуру устройства, но и преобразовывать его тепло в электроэнергию. Результаты исследований были опубликованы в журнале «Nano Express».
Источник