Что значит сонаправленные лучи

§ 15. Углы

15.1 Сонаправленность лучей

Два луча а и b называются сонаправленными, если они перпендикулярны некоторой плоскости α и лежат с одной стороны от неё (рис. 125).

Для сонаправленных лучей а и b употребляется обозначение: а ↑↑ b.

Из данного определения и теоремы о параллельности перпендикуляров следует, что возможны два случая расположения сонаправленных лучей:

  1. два сонаправленных луча лежат на одной прямой, и тогда один из них содержит другой (рис. 126, а);
  2. два сонаправленных луча лежат на параллельных прямых, и тогда они лежат с одной стороны от прямой, проходящей через их начала (рис. 126, б).

Основной признак сонаправленности лучей даёт следующая лемма:

Лемма (о сонаправленности лучей). Два луча, сонаправленные с третьим лучом, сонаправлены.

Доказательство. Пусть лучи а и b сонаправлены с лучом с. Докажем, что а и b сонаправлены. Так как a ↑↑ с, то они перпендикулярны некоторой плоскости α и лежат с одной стороны от неё. Аналогично b и с перпендикулярны некоторой плоскости β и лежат с одной стороны от β. Так как α и β перпендикулярны одной прямой, на которой лежит луч с, то α || β (рис. 127).

Пусть плоскость α удалена от начала луча с дальше, чем плоскость β. Тогда все лучи а, b, с лежат с одной стороны от плоскости α и все перпендикулярны ей (по теоремам из пп. 8.1 и 8.2.). Поэтому лучи а и b сонаправлены. Если даны луч р и точка А, то из точки А можно провести единственный луч q, сонаправленный с лучом р.

Строя этот луч, надо рассмотреть два случая:

  1. точка А и луч р лежат на одной прямой;
  2. они не лежат на одной прямой.

В первом случае один из лучей р или q содержит другой (рис. 128, а). Во втором случае лучи р и q лежат на параллельных прямых с одной стороны от прямой, проходящей через их начала (рис. 128, б).

15.2 Угол между лучами

Угол между сонаправленными лучами полагается равным 0°.

Если лучи р и q не сонаправлены и имеют общее начало, то угол между ними определяется как величина плоского угла со сторонами р и q.

Наконец, в общем случае, когда лучи р и q не сонаправлены и имеют различные начала, поступают так: из любой точки О проводят лучи р’ и q’, сонаправленные соответственно с лучами р и q (рис. 129). Углом между р и q называется величина угла между р’ и q’.

Угол между лучами р и q обозначается так: ∠(pq).

Угол между р и q не зависит от выбора точки О. Это вытекает из следующей леммы:

Лемма (об углах с сонаправленными сторонами ). Углы, стороны которых соответственно сонаправлены, равны.

Доказательство. Пусть даны два угла с вершинами в точках О и О’ и соответственно со-направленными сторонами: р ↑↑ р’ и q ↑↑ q’. В частном случае, когда у этих углов есть стороны, лежащие на одной прямой, утверждение леммы вытекает из равенства соответственных углов при параллельных прямых, пересечённых третьей прямой (рис. 130, а). Поэтому рассмотрим общий случай, когда стороны углов не лежат на одной прямой.

Отложим на сонаправленных сторонах этих углов равные отрезки: ОА = ОА’ на р и р’, а также OВ = O’В’ на q и q’ (рис. 130, б). Проведём отрезки ОО’, АА’, ВВ’, АВ и А’В’. Так как ОА = ОА’ и ОА || ОА’, то четырёхугольник ОАА’О’ — параллелограмм. Поэтому АА’ = ОО’, АА’ || ОО’. Аналогично OO’ = ВВOO’ || ВВ’. Поэтому АА’ = ВВ’, АА || ВВ’, т. е. четырёхугольник АА’В’В — параллелограмм. Следовательно, АВ = А’В’.

Итак, в треугольниках ОАВ и О’А’В’ соответственные стороны равны. Но тогда в них равны и соответственные углы. Итак, ∠AOB = ∠A’O’B’, т. е. ∠(pq) = ∠(p’q’).

Пусть теперь даны два луча р и q. Из точек А и В проведём сонаправленные с ними лучи р, q’ и p», q” (рис. 131). По лемме о сонаправленности лучей (п. 15.1) р’ || р» и q’ || q». А тогда по лемме об углах с сонаправленными сторонами, доказанной в этом пункте, ∠(p’q’) = ∠(p»q»)9 как и говорилось при определении угла между р и q.

15.3 Угол между прямыми

Если прямые пересекаются, то угол между ними, как известно из планиметрии, равен величине вертикальных не тупых углов, образованных этими же прямыми.

Если же прямые скрещиваются, то угол между ними определяют так: через любую точку проводят прямые, параллельные данным, и находят угол между этими прямыми.

В частности, мы можем теперь говорить о взаимно перпендикулярных скрещивающихся прямых и отрезках, если угол между ними равен 90° (отрезки взаимно перпендикулярны, если они лежат на взаимно перпендикулярных прямых).

При таком расширении понятия перпендикулярности прямых, лучей и отрезков остаются справедливыми доказанные ранее теоремы, в которых перпендикулярность рассматривалась лишь для пересекающихся прямых, лучей и отрезков: признак перпендикулярности прямой и плоскости (п. 7.1) и теорема о трёх перпендикулярах (п. 13.2).

Убедитесь в этом!

В дальнейшем мы будем применять эти теоремы именно в этом более широком смысле. Так, например, прямая а перпендикулярна плоскости α, если она перпендикулярна любым двум пересекающимся прямым, лежащим на этой плоскости. Эти прямые прямую а могут и не пересекать.

15.4 Угол между прямой и плоскостью

Мы уже подробно изучили два важнейших случая взаимного расположения прямой и плоскости: перпендикулярность и параллельность. Если прямая перпендикулярна плоскости, то она перпендикулярна любой прямой в этой плоскости. Поэтому естественно считать, что угол между взаимно перпендикулярными прямой и плоскостью равен 90°. Если же прямая параллельна плоскости или лежит в ней, то угол между ними считается равным 0°.

Рассмотрим общий случай, когда прямая а пересекает плоскость α, но не перпендикулярна ей (рис. 132), т. е. случай прямой, наклонной к плоскости. Характеризуя взаимное расположение таких прямых, часто указывают, насколько прямая отклонилась от перпендикуляра к плоскости. Например, в оптике говорят про угол падения луча света на плоскую поверхность, т. е. про угол между прямой и перпендикуляром (нормалью) к данной плоскости (рис. 132, а). Но в геометрии, оценивая наклон прямой к плоскости, рассматривают не этот угол, а угол, дополняющий его до 90°, т. е. показывающий, насколько прямая отклонилась от плоскости.

Углом между плоскостью и наклонной к ней прямой называется угол φ между этой прямой и её проекцией на данную плоскость (рис. 132, б).

Ясно, почему это определение исключает случай, когда прямая перпендикулярна плоскости: проекцией такой прямой на плоскость будет точка.

Угол между прямой а и плоскостью α обозначается так: ∠aα.

Угол между прямой и плоскостью обладает следующим минимальным свойством: он является наименьшим среди всех углов, образованных данной прямой с прямыми на плоскости. Докажите это свойство сами.

Источник

Геометрия

Лучшие условия по продуктам Тинькофф по этой ссылке

Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера

. 500 руб. на счет при заказе сим-карты по этой ссылке

Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке

План урока:

Понятие скрещивающихся прямых

В пространстве можно построить две прямые так, что они не будут пересекаться, но и параллельными они также являться не будут. Для этого достаточно, чтобы прямые НЕ находились в одной плоскости. В этом случае их именуют скрещивающимися прямыми.

Здесь ребра ВС и АЕ как раз лежат на двух скрещивающихся прямых. Поэтому их можно так и называют – скрещивающиеся отрезки. По аналогии можно ввести понятие и скрещивающихся лучей.

Существует теорема, представляющая собой признак скрещивающихся прямых.

Действительно, пусть есть две прямые, НК и РМ. Обозначим как α плос-ть, проходящую через НК и точку М. Если РМ пересекает α, то это означает, что М – единственная общая точка у α и РМ. Получается, что Н, К, М и Р – это точки в различных плос-тях, и через них нельзя провести одну плос-ть. Значит, и прямые НК и РМ – скрещивающиеся.

Таким образом, в стереометрии возможно всего три случая взаимного расположения двух прямых в пространстве:

1) прямые пересекаются, и тогда они обязательно находятся в одной плос-ти;

2) прямые располагаются в одной плос-ти, но не пересекаются – случай параллельных прямых;

3) прямые находятся в разных плос-тях – случай скрещивающихся прямых.

Докажем одну теорему:

Для доказательства возьмем произвольные скрещивающиеся прямые m и n. Отметим на n точку К и проведем через К прямую р, параллельную m:

Через пересекающиеся прямые nи p можно провести единственную плос-тьα. По признаку параллельности прямой и плос-ти можно заключить, что m||α.

Покажем, что кроме α нет других плос-тей, проходящих через n и параллельных m. Действительно, если бы такая плос-ть β существовала, то р имела бы с ней общую точку К, но полностью в β она бы не могла находиться, иначе α и β совпадали бы. Значит, р пересекала бы β. Но тогда ее обязательно пересекала бы и m по одну из свойств параллельных прямых. В этом случае m и β не были бы параллельными.

Сонаправленные лучи

В планиметрии существует понятие сонаправленных лучей. Пусть на плос-ти есть два луча О1А и О2В. Проведем прямую О1О2. Она, как и всякая прямая, разделит плос-ть на две полуплоскости. Для того, чтобы лучи О1А и О2В считались сонаправленными, необходимо выполнение двух условий:

1) они должны оказаться в одной полуплоскости;

2) они должны быть параллельными.

Здесь мы рассмотрели случай, когда лучи О1А и О2В находятся на разных прямых. Возможен частный случай, когда они располагаются на одной прямой. В таком случае для сонаправленности лучей достаточно, чтобы один из них полностью лежал на другом:

Рассмотрим теорему, касающуюся сонаправленных лучей, причем она верна не только в планиметрии, но и в стереометрии.

В доказательстве сразу рассмотрим случай углов, располагающихся в разных плос-тях. Пусть есть углы О1 и О2, стороны которых образуют попарно сонаправленные лучи. На одной паре лучей отметим точки А1 и А2 так, чтобы отрезки О1А1 и О2А2 были одинаковыми. На другой паре лучей аналогично отложим точки В1 и В2 так, чтобы одинаковыми были отрезки О1В1 и О2В2:

Заметим, что лучи О1А1 и О2А2 как сонаправленные должны располагаться в одной плос-ти, иначе они не будут параллельными. Тогда О1А1А2О2 – плоский четырехугольник. Отрезки О1А1 и О2А2 параллельны и одинаковы. Это значит, что О1А1А2О2 – параллелограмм. Аналогично легко убедиться, что параллелограммом является и четырехугольник О1В1В2О2. Это значит, что

Отсюда вытекает (по свойству транзитивности), что отрезки А1А2 и В1В2 также одинаковы и параллельны, а потому А1А2В2В1 – также параллелограмм. Значит, стороны А1В1 и А2В2 одинаковы. Получается, что у ∆О1А1В1 и ∆О2А2В2 одинаковы все стороны, поэтому ∆О1А1В1 и ∆О2А2В2 равны. Отсюда вытекает и равенство углов ∠А1О1В1 и ∠А2О2В2, ч. т. д.

Угол между прямыми

Напомним, какая величина считается углом между пересекающимися прямыми. При пересечении прямых образуется 4 угла. Зная один из них, легко вычислить и остальные углы. Понятно, что хотя бы один из углов будет не превышать 90°. Именно такой угол и принимается за угол между прямыми:

Теперь покажем, как определить угол между скрещивающимися прямыми. Пусть прямые m и n скрещиваются. Выберем в пространстве произвольную точку К. Через нее можно построить такие прямые m1 и n1, что m1||m и n1||n. Угол между m1 и n1 как раз и принимается за угол между скрещивающимися прямыми m и n:

Возникает вопрос – зависит ли величина измеренного таким образом угла от того, какая именно точка К выбрана? Оказывается, что не зависит, и это можно доказать. Выберем две произвольные точки К1 и К2. Через К1 проведем прямые n1 и m1, а через К2 проведем n2 и m2, которые будут соответственно параллельны исходным прямым m и n.

Так как n1||n и n2||n, то по свойству транзитивности параллельности и n1||n2. Аналогично и m1||m2. Получается, что стороны углов в точках К1 и К2 соответственно сонаправлены. Значит, они одинаковы, ч. т. д.

Задачи на скрещивающиеся прямые

Теоретический материал закончился, осталось научиться применять полученные знания. Перед просмотром решения постарайтесь самостоятельно решить каждую задачу.

Задание. Точка D находится вне плос-ти ∆АВС. Середины отрезков АD, BD и СD обозначены буквами M, N и P соответственно. Точка K располагается на отрезке BN (и не совпадает с концами этого отрезка). Определите, как относительно друг друга располагаются прямые:

Решение. Сначала важно построить правильный рисунок по описанию задачи:

Теперь можно рассмотреть по отдельности каждый пункт.

а) АВ и DN. Прямая DN совпадает с прямой BD. Она в свою очередь пересекается с АВ в точке В. Значит, в данном случае прямые пересекаются.

б) РК и ВС. Рассмотрим плос-ть треугольника ∆ВСD. Рассматриваемые прямые как раз находятся в ней. То есть они уже точно не скрещиваются. Могут ли они быть параллельны? Обратите внимание на отрезок NP. Это средняя линия в ∆ВСD, поэтому NP||ВС. Через Р может быть проведена лишь одна прямая, параллельная ВС (по аксиоме параллельности), и это NP. Значит, KP пересекает ВС.

в) MN и АВ. В ∆АВDMN является средней линией, поэтому MN||АВ.

г) МР и АС. МР – это средняя линия в ∆АСD, значит, МР||АС.

д) KN и АС. Прямая KN совпадает с прямой BD. Она пересекает плос-ть АСВ, но точка пересечения (это В) не находится на АС. Тогда по признаку скрещивающихся прямых можно утверждать, что KN и АС скрещиваются.

е) MD и ВС. MD пересекается с плос-тью АСВ в точке А. Тогда из признака скрещивающихся прямых вытекает, что MD и DC скрещиваются.

Задание. Через точку Р, не находящуюся на прямой m, проведены две различные прямые, не пересекающиеся с m. Верно ли, что хотя бы одна из них точно скрещивается с m?

Решение. Каждая из этих двух прямых с m не пересекается. Тогда они либо параллельны m, либо скрещиваются с ней. Но обе прямые параллельны m не могут быть параллельны m, ведь тогда через Р будет проведено сразу две прямые, параллельные m, что невозможно. Значит, хотя бы одна из прямых действительно скрещивается с m.

Задание. MК и РН – скрещивающиеся прямые.Скрещиваются ли прямые МН и КР?

Решение. Ясно, что точки М, К, Р, Н располагаются в различных плос-тях. В противном случае, если бы существовала плос-ть α, в которой находились бы М, К, Р и Н, то в α также находились бы прямые МК и РН, и тогда они уже по определению не были бы скрещивающимися.

Теперь рассмотрим плос-ть КРН. В ней находится прямая КР. А прямая МН ее пересекает в точке К. Тогда, по признаку скрещивающихся прямых, МН и КР скрещиваются.

Задание. Прямые m и n скрещиваются. M – точка на m, N – точка на n. Через m и N проведена плос-ть α, а через n и M – плос-ть β. Пересекаются ли плос-ти α и β, и если да, то по какой линии?

Посмотрим, есть ли у α и β общие точки. Плос-ть α проходит через n, то есть и через точку N тоже. Плос-ть β также проходит через N. Значит, N – общая точка. Аналогично можно показать, что и М – это общая точка. В итоге α и β пересекаются, причем на линии пересечения находятся точки M и N. Значит, именно прямая МN является границей этих двух плос-тей.

Задание. Известно, что MНКЕ – параллелограмм, а МНРТ – трапеция (РТ – её основание), причем они располагаются в разных областях. Каково расположение отрезков КЕ и РТ друг относительно друга.

Решение. Задачу можно решить и без рисунка. Если РТ – основание трапеции, то второе основание – это МН, и МН||РТ. В параллелограмме МНКЕ параллельны стороны МН и КЕ, ведь они противоположные. Тогда по свойству транзитивности параллельности из того факта, что МН||РТ и МН||КЕ, вытекает, что и РТ||КЕ.

Задание. Известно, что ОА и СD – скрещивающиеся прямые, а ОВ||CD. Чему равен угол между ОА и CD, если

Если CD||ОВ, то угол между CD и ОА совпадает с углом между ОВ и ОА. В задании а) он совпадет с ∠АОВ и составляет 40°. В случае б) угол не может составлять 135°, так как он не должен превышать 90°. Поэтому он равен

Наконец, в случае в) он составит 90°.

Ответ: а) 40°; б) 45°; в) 90°.

Задание. Дан куб, вершины которого обозначены так, как это показано на рисунке:

Найдите угол между прямыми:

Решение. Во всех трех случаях нам даны скрещивающиеся прямые. Для вычисления угла надо найти такие параллельные им прямые, которые будут пересекаться.

а) AD и GH. Заметим, что GH||СD, ведь это противоположные стороны квадрата СDHG, поэтому мы можем определить угол между AD и CD. Другими словами, мы просто заменяем в задаче GH на CD, так как эти отрезки параллельны. Так как отрезки AD и CD в свою очередь являются уже смежными сторонами в квадрате АВСD, то ∠ADC, который нам надо найти, составляет 90°.

б) BD и FG. Здесь уже уместно заменить FG на ВС. Это можно сделать, ведь FG||ВС (это стороны квадрата). Тогда нам необходимо вычислить ∠СВD. Он составляет 45°, ведь диагональ квадрата делит его угол пополам.

в) BD и AF. Здесь есть смысл AF заменить на GD. Но для этого надо сначала показать, что AF||DG.Рассмотрим отрезки AD и FG. Каждый из них параллелен ВС (по свойству квадратов ABCD и ВСGH). Значит, по свойству транзитивности AD||FG, то есть эти отрезки располагаются в одной плос-ти. Тогда AFGD – плоский четырехугольник.

Заметим, что отрезки AD и FG ещё и одинаковы, так каждый из них равен ВС (вообще в кубе все ребра одинаковы). Получается, что в четырехугольнике AFGD стороны AD и FG одинаковы и параллельны, а потому AFGD – параллелограмм, по одному из его признаков. Отсюда и вытекает, что AF||DG.

Мы поняли, искомый нами угол между прямыми равен∠BDG. Как его вычислить? Для этого надо рассмотреть ∆BDG. Можно заметить, что он равносторонний. Действительно, отрезки BG, GD и BD – это диагонали в равных квадратах ВСGH, СDHG, АВСD, поэтому и сами эти диагонали также одинаковы. В любом равностороннем треугольнике все углы составляют по 60°, поэтому и ∠BDG равен этому же значению, то есть 60°.

Ответ: а) 90°; б) 45°; в) 60°.

Задание (стереометрическая задача из ЕГЭ). Точки А, В, С и D в пространстве располагаются так, что расстояния между любыми двумя из этих точек одинаковы. Можно доказать (попробуйте сделать это самостоятельно), что такая ситуация возможна лишь в случае, когда точки не располагаются в одной плос-ти. М – середина ВС, а L – середина АВ. Найдите косинус угла между прямыми МD и CL.

Решение. Из условия вытекает, что ∆АВС, ∆ВСD, ∆ABD – равносторонние и притом равные друг другу. Проведем в ∆АВС отрезок такой отрезок MF, что MF||СL. Тогда нам необходимо вычислить ∠DMF (точнее, его косинус). Это можно сделать, используя теорему косинусов применительно к ∆MDF, но для этого сперва надо найти все стороны в этом треугольнике:

Для удобства обозначим длину отрезков АВ, ВС, АС, BD, AD и CD буквой R. Так как L– середина АВ, то CL– медиана в ∆АВС. Но в равностороннем треугольнике она одновременно будет и высотой. Тогда ∆АСL – прямоугольный. Запишем для него теорему Пифагора:

Аналогичным образом легко определить, что длина медианы DМ в ∆ВСD равна этому же значению:

Теперь исследуем ∆ВСL. Так как MF||CL и М – середина ВС, то MF оказывается средней линией в ∆ВСL. Значит, ее длина вдвое меньше, чем у СL:

Также из того факта, что МF – средняя линия, вытекает то, что F – середина LВ. Тогда можно вычислить FB:

Далее обратим внимание на ∆ВFD. ∠В в нем составляет 60°, ведь это одновременно и угол в равностороннем ∆АВD. Стороны FB и BD нам известны, а потому с помощью теоремы косинусов можно вычислить и FD:

Теперь можно составить и для ∆МDF уравнение на основе теореме косинуса, из которого удастся выяснить интересующий нас косинус ∠DMF:

В ходе сегодняшнего урока мы познакомились с новым понятием – скрещивающимися прямыми. Также мы узнали, как вычислять угол между ними. Подобные задачи могут встречаться и на ЕГЭ.

Источник

Читайте также:  On demand pokerstars что значит турниры
Оцените статью