§ 3. Определение координаты движущегося тела
В предыдущем параграфе говорилось о том, что положение тела, совершившего некоторое перемещение, можно найти графически, отложив вектор перемещения от начального положения этого тела. Но в большинстве случаев необходимо вычислить положение тела, т. е. определить его координаты.
Известно, что вычисления производят не с векторами, а с соответствующими им скалярными величинами: с проекциями векторов на координатные оси и с модулями векторов или их проекций (т. е. с величинами, представляющими собой положительные или отрицательные числа, но не имеющими направления).
Покажем, как определить координату движущегося тела, зная координату его начального положения и вектор перемещения. Для этого решим задачу.
Два катера идут по реке в противоположных направлениях и встречаются в 100 км к востоку от пристани П (рис. 4). Продолжая движение, за некоторый промежуток времени t первый катер переместился от места встречи на 60 км к востоку, а второй — на 50 км к западу. Определите координаты каждого катера относительно пристани и расстояние между катерами через промежуток времени t после их встречи.
Проведём координатную ось ОХ параллельно прямой, вдоль которой движутся катера, и направим её на восток. Начало этой оси (х = 0) — точку О — совместим с пристанью, приняв её за тело отсчёта (поскольку в задаче требуется определить положение катеров по отношению к пристани).
Спроецировав начала и концы векторов перемещения и
на ось ОХ, получим отрезки s1x и s2x, которые являются проекциями указанных векторов. Проекция вектора на ось считается положительной, если вектор сонаправлен с этой осью, и отрицательной, если вектор направлен противоположно оси.
Значит, в данном случае s1x > 0, a s2x 0. Значит, х0 = 100 км.
Поскольку ось ОХ параллельна векторам перемещений катеров, длины проекций s1x;c и s2x равны соответственно длинам векторов и
(как противоположные стороны построенных на них прямоугольников). А это означает, что модуль каждой проекции равен модулю соответствующего ей вектора.
Указанные в задаче расстояния (60 км и 50 км), на которые сместились катера за время t, представляют собой модули векторов их перемещений. Значит, модуль проекции s1x равен 60 км, а модуль проекции s2x равен 50 км.
Поскольку проекция s1x положительна, то можно записать: s1x = 60 км. Но проекция s2x отрицательна, поэтому s2x = -50 км.
Теперь запишем условие задачи и решим её.
Вопросы
1. С какими величинами производят вычисления — с векторными или скалярными?
2. При каком условии проекция вектора на ось будет положительной, а при каком — отрицательной?
3. Запишите уравнение, с помощью которого можно определить координату тела, зная координату его начального положения и вектор перемещения.
Упражнение 3
1. Мотоциклист, переехав через мост, движется по прямолинейному участку дороги. У светофора, находящегося на расстоянии 10 км от моста, мотоциклист встречает велосипедиста. За 0,1ч с момента встречи мотоциклист перемещается на 6 км, а велосипедист — на 2 км от светофора (при этом оба они продолжают двигаться прямолинейно в противоположных направлениях).
Определите координаты мотоциклиста и велосипедиста и расстояние между ними спустя 0,1ч после их встречи.
У к а з а н и е: начертите ось X, направив её в сторону движения мотоциклиста и приняв за тело отсчёта мост. Обозначьте на этой оси координату светофора (хс), координаты велосипедиста (хв) и мотоциклиста (хм), которые они имели через 0,1ч после встречи. Над осью начертите и обозначьте векторы перемещений велосипедиста и мотоциклиста
, а на оси — проекции этих векторов (sвх и sмx).
2. Мальчик держит в руках мяч на высоте 1 м от поверхности земли. Затем он подбрасывает мяч вертикально вверх. За некоторый промежуток времени t мяч успевает подняться на 2,4 м от своего первоначального положения, достигнув при этом точки наибольшего подъёма, и опуститься от этой точки на 1,25 м (рис. 5).
Пользуясь этим рисунком, определите: а) координату х0 начального положения мяча; б) проекцию stx вектора перемещения , совершённого мячом за время t; в) координату хt, которую имел мяч через промежуток времени t после броска.
Источник
Что значит сонаправлен с этой осью
Учебник Физика 7 класс Кривченко И.В., размещённый в этой рубрике, включён в федеральный перечень учебников в соответствии с ФГОС. Учебник в цветном полиграфическом исполнении с твёрдым переплетом объёмом 150 страниц вышел из печати в июле 2015 г. в пятом издании. Учебник физики 7 класса рассчитан на 2 урока в неделю и содержит 6 тем курса физики, которые перечислены ниже.
Физика. Физическая величина. Измерение физических величин.
Цена делений шкалы прибора. Погрешность прямых и косвенных измерений.
Формулы и вычисления по ним. Единицы физических величин.
Метод построения графика.
Явление тяготения и масса тела. Свойство инертности и масса тела.
Плотность вещества. Таблицы плотностей некоторых веществ.
Средняя плотность тел и их плавание.
Метод научного познания.
Сила и динамометр. Виды сил.
Уравновешенные силы и равнодействующая.
Сила тяжести и вес тела. Сила упругости и сила трения.
Закон Архимеда. Вычисление силы Архимеда.
Простые механизмы. Правило равновесия рычага.
Определение давления. Давление жидкости. Закон Паскаля. Давление газа.
Атмосферное давление. Барометр Торричелли. Барометр-анероид.
Вакуумметры. Манометры: жидкостные и деформационные.
Пневматические и гидравлические механизмы.
Механическая работа. Коэффициент полезного действия. Мощность.
Энергия. Кинетическая и потенциальная энергия.
Механическая энергия. Внутренняя энергия.
Взаимные превращения энергии.
Температура и термометры. Количество теплоты и калориметр.
Теплота плавления/кристаллизации и парообразования/конденсации.
Первый закон термодинамики. Двигатель внутреннего сгорания.
Теплота сгорания топлива и КПД тепловых двигателей.
Теплообмен. Второй закон термодинамики.
Учебник Физика 8 класс Кривченко И.В., размещённый в этой рубрике, включён в федеральный перечень учебников в соответствии с ФГОС. Учебник в цветном полиграфическом исполнении с твёрдым переплетом объёмом 150 стр. вышел из печати в июле 2015 г. в четвёртом издании. Учебник физики 8 класса рассчитан на 2 урока в неделю и содержит 5 тем курса физики, которые перечислены ниже.
Из истории МКТ. Частицы вещества. Движение частиц вещества.
Взаимодействие частиц вещества. Систематизирующая роль МКТ.
Кристаллические тела. Аморфные тела. Жидкие тела. Газообразные тела.
Агрегатные превращения. Насыщенный пар. Влажность воздуха.
Строение атомов и ионов. Электризация тел и заряд.
Объяснение электризации. Закон сохранения электрического заряда.
Электрическое поле. Электрический конденсатор. Электрический ток.
Электропроводность жидкостей, газов и полупроводников.
Электрическая цепь. Сила тока. Электрическое напряжение. Работа тока.
Закон Ома для участка цепи. Сопротивление соединений проводников.
Закон Джоуля-Ленца. Электронагревательные приборы.
Полупроводниковые приборы. Переменный ток.
Магнитное поле. Соленоид и электромагнит. Постоянные магниты.
Действие магнитного поля на ток. Электродвигатель на постоянном токе.
Электромагнитная индукция. Электротрансформатор. Передача электроэнергии.
Электродвигатель на переменном токе.
Период, частота и амплитуда колебаний. Нитяной и пружинный маятники.
Механические волны. Свойства механических волн. Звук.
Электромагнитные колебания. Излучение и прием электромагнитных волн.
Свойства электромагнитных волн. Принципы радиосвязи и телевидения.
Учебник Физика 9 класс Кривченко И.В., размещённый в этой рубрике, включён в федеральный перечень учебников в соответствии с ФГОС. Учебник в цветном полиграфическом исполнении с твёрдым переплетом объёмом 150 стр. вышел из печати в июле 2015 г. в третьем издании. Учебник физики 9 класса рассчитан на 2 урока в неделю и содержит 4 темы курса физики, которые перечислены ниже.
Что такое кинематика. Относительность движения. Путь и перемещение.
Сложение и вычитание векторов. Проекции векторов на координатные оси.
Равномерное движение. Мгновенная скорость. Равноускоренное движение.
Графическое описание движений. Равномерное движение по окружности.
Что такое динамика. Первый, второй и третий законы Ньютона.
Законы Гука и Кулона-Амонтона. Закон всемирного тяготения.
Закон сохранения импульса. Реактивное движение.
Кинетическая энергия. Потенциальная энергия.
Источники света. Прямолинейное распространение света. Отражение света.
Зеркала. Преломление света. Линзы. Оптические приборы.
Дисперсия света и цвета тел. Фотография и полиграфия.
Корпускулярно-волновой дуализм.
Физика XX века. Явление радиоактивности. Регистрация частиц.
Строение атома. Характеристики атомного ядра. Ядерные реакции.
Природа и свойства радиоактивных излучений. Энергия связи ядра.
Энергия ядерных реакций. Ядерная энергетика. Физика XXI века.
Для перехода к параграфам кликайте нумерацию 01 02 03 04 05 и т.д. вверху страницы. Параграфы каждой темы курса физики снабжены интерактивными вопросами и заданиями.