Что значит сложный эфир

Сложные эфиры

Сло́жные эфи́ры — производные оксокислот (как карбоновых так и минеральных) RkE(=O)l(OH)m, (l ≠ 0), формально являющиеся продуктами замещения атомов водорода гидроксилов —OH кислотной функции на углеводородный остаток (алифатический, алкенильный, ароматический или гетероароматический); рассматриваются также как ацилпроизводные спиртов. В номенклатуре IUPAC к сложным эфирам относят также ацилпроизводные халькогенидных аналогов спиртов (тиолов, селенолов и теллуролов) [1] .

Отличаются от простых эфиров, в которых два углеводородных радикала соединены атомом кислорода (R1—O—R2).

Содержание

Сложные эфиры карбоновых кислот

В случае эфиров карбоновых кислот выделяются два класса сложных эфиров:

  • собственно сложные эфиры карбоновых кислот общей формулы R1—COO—R2, где R1 и R2 — углеводородные радикалы.
  • ортоэфиры карбоновых кислот общей формулы R1—C(OR2)3, где R1 и R2 — углеводородные радикалы. Ортоэфиры карбоновых кислот являются функциональными аналогами кеталей и ацеталей общей формулы R—C(OR′)2—R″ — продуктов присоединения спиртов к карбонильной группе кетонов или альдегидов.

Циклические сложные эфиры оксикислот называются лактонами и выделяются в отдельную группу соединений.

Синтез

Основные методы получения сложных эфиров:

  • Этерификация — взаимодействие кислот и спиртов в условиях кислотного катализа, например получение этилацетата из уксусной кислоты и этилового спирта: СН3COOH + C2H5OH = СН3COOC2H5 + H2O Частным случаем реакции этерификации является реакция переэтерификации сложных эфиров спиртами, карбоновыми кислотами или другими сложными эфирами: R’COOR» + R»’OH = R’COOR»’ + R»OH R’COOR» + R»’COOH = R»’COOR» + R’COOH R’COOR» + R»’COOR»» = R’COOR»» + R»’COOR» Реакции этерификации и переэтерификации обратимы, сдвиг равновесия в сторону образования целевых продуктов достигается удалением одного из продуктов из реакционной смеси (чаще всего — отгонкой более летучих спирта, эфира, кислоты или воды; в последнем случае при относительно низких температурах кипения исходных веществ используется отгонка воды в составе азеотропных смесей).
  • взаимодействие ангидридов или галогенангидридов карбоновых кислот со спиртами, например получение этилацетата из уксусного ангидрида и этилового спирта: (CH3CO)2O + 2 C2H5OH = 2 СН3COOC2H5 + H2O
  • взаимодействие солейкислот с алкилгалогенидами RCOOMe + R’Hal = RCOOR’ + MeHal
  • Присоединение карбоновых кислот к алкенам в условиях кислотного катализа (в том числе и кислотами Льюиса): RCOOH + R’CH=CHR» = RCOOCHR’CH2
  • Алкоголиз нитрилов в присутствии кислот: RCN + H + RC + =NH RC + =NH + R’OH RC(OR’)=N + H2 RC(OR’)=N + H2 + H2O RCOOR’ + + NH4
  • Алкилирование карбоновых кислот арилиакилтриазенами: ArN=NNHR + R 1 COOH R 1 COOR+ ArNH2 + N2
Читайте также:  Пузырные симптомы отрицательные что это значит

Свойства и реакционная способность

Сложные эфиры низших карбоновых кислот и простейших одноатомных спиртов — летучие бесцветные жидкости с характерным, зачастую фруктовым запахом. Сложные эфиры высших карбоновых кислот — бесцветные твердые вещества, температура плавления зависит как от длин углеродных цепей ацильного и спиртового остатков, так и от их структуры.

В ИК-спектрах сложных эфиров присутствуют характеристические полосы карбоксильной группы — валентных колебаний связей C=O при 1750—1700 см −1 и С-О при 1275—1050 см −1 .

Атом углерода карбонильной группы сложных эфиров электрофилен, вследствие этого для них характерны реакции замещения спиртового остатка с разрывом связи ацил-кислород:

RCOOR 1 + Nu − RCONu + R 1 O − Nu = OH, R 2 O, NH2, R 2 NH, R 2 CH и т. п.

Такие реакции с кислородными нуклеофилами (водой и спиртами) зачастую катализируются кислотами за счет протонирования атома кислорода карбонила с образованием высокоэлектрофильного карбокатиона:

RCOOR 1 + H + RC + OHOR 1 ,

который далее реагирует с водой (гидролиз) или спиртом (переэтерификация). Гидролиз сложных эфиров в условиях кислотного катализа является обратимым, гидролиз же в щелочной среде необратим из-за образования карбоксилат-ионов RCOO − , не проявляющих электрофильных свойств.

Низшие сложные эфиры реагируют с аммиаком, образуя амиды, уже при комнатной температуре: так, например, этилхлорацетат реагирует с водным аммиаком, образуя хлорацетамид уже при 0 °C [2] , в случае высших сложных эфиров аммонолиз идет при более высоких температурах.

Применение

Эфиры муравьиной кислоты

  • HCOOCH3метилформиат, tкип = 32 °C; растворитель жиров, минеральных и растительных масел, целлюлозы, жирных кислот; ацилирующий агент; используют в производстве некоторых уретанов, формамида.
  • HCOOC2H5этилформиат, tкип = 53 °C; растворитель нитрата и ацетата целлюлозы; ацилирующий агент; отдушка для мыла, его добавляют к некоторым сортам рома, чтобы придать ему характерный аромат; применяют в производстве витаминов B1, A, E.
  • HCOOCH2CH(CH3)2изобутилформиат несколько напоминает запах ягод малины.
  • HCOOCH2CH2CH(CH3)2изоамилформиат (изопентилформиат) растворитель смол и нитроцеллюлозы.
  • HCOOCH2C6H5бензилформиат, tкип = 202 °C; имеет запахжасмина; используется как растворитель лаков и красителей.
  • HCOOCH2CH2C6H52-фенилэтилформиат имеет запаххризантем.

Эфиры уксусной кислоты

  • CH3COOCH3метилацетат, tкип = 58 °C; по растворяющей способности аналогичен ацетону и применяется в ряде случаев как его заменитель, однако он обладает большей токсичностью, чем ацетон.
  • CH3COOC2H5этилацетат, tкип = 78 °C; подобно ацетону растворяет большинство полимеров. По сравнению с ацетоном его преимущество в более высокой температуре кипения (меньшей летучести).
  • CH3COOC3H7н-пропилацетат, tкип = 102 °C; по растворяющей способности подобен этилацетату.
  • CH3COOCH(CH3)2изопропилацетат, tкип = 88 °C; по растворяющим свойствам занимает промежуточное положение между этил- и пропилацетатом.
  • CH3COOC5H11н-амилацетат (н-пентилацетат), tкип = 148 °C; напоминает по запаху грушу, применяется как растворитель для лаков, поскольку он испаряется медленнее, чем этилацетат.
  • CH3COOCH2CH2CH(CH3)2изоамилацетат (изопентилацетат), используется как компонент грушовой и банановой эссенции.
  • CH3COOC8H17н-октилацетат имеет запах апельсинов.

Эфиры масляной кислоты

  • C3H7COOCH3метилбутират, tкип = 102,5 °C; по запаху напоминает ранет.
  • C3H7COOC2H5этилбутират, tкип = 121,5 °C; имеет характерный запах ананасов.
  • C3H7COOC4H9бутилбутират, tкип = 166,4 °C;
  • C3H7COOC5H11н-амилбутират (н-пентилбутират) и C3H7COOCH2CH2CH(CH3)2изоамилбутират (изопентилбутират) имеют запах груш, а также служат растворителями в лаках для ногтей.

Эфиры изовалериановой кислоты

  • (CH3)2CHCH2COOCH2CH2CH(CH3)2изоамилизовалерат (изопентилизовалерат) имеет запах яблока.

Применение в медицине

В конце XIX — начале XX века, когда органический синтез делал свои первые шаги, было синтезировано и испытано фармакологами множество сложных эфиров. Они стали основой таких лекарственных средств, как салол, валидол и др. Как местнораздражающее и обезболивающее средство широко использовался метилсалицилат, в настоящее время практически вытесненный более эффективными средствами.

Источник

Сложные эфиры: способы получения и свойства

Сложные эфиры: способы получения, химические и физические свойства, строение.

Сложные эфиры – это органические вещества, в молекулах которых углеводородные радикалы соединены через карбоксильную группу -СОО-, а именно R1-COOH-R2.

Общая формула предельных сложных эфиров: СnH2nO2

Классификация сложных эфиров

По числу карбоксильных групп:

  • сложные эфиры одноосновных карбоновых кислот — содержат одну карбоксильную группу -СОО-. Общая формула CnH2nO2.
Например, метилформиат
  • сложные эфиры многоосновных карбоновых кислот — содержат две и более карбоксильные группы -СОО-. Например, общая формула сложных эфиров двухосновных карбоновых кислот CnH2n-2O4.
Например, тристеарат глицерина

Номенклатура сложных эфиров

В названии сложного эфира сначала указывают алкильную группу, связанную с кислородом, затем кислоту, заменяя суффикс в названии кислоты (-овая кислота) на суффикс -оат.

Название сложного эфира Тривиальное название Формула эфира
Метилметаноат Метилформиат HCOOCH3
Этилметаноат Этилформиат HCOOC2H5
Метилэтаноат Метилацетат CH3COOCH3
Этилэтаноат Этилацетат CH3COOC2H5
Пропилэтаноат Пропилацетат CH3COOCH2CH2CH3

Химические свойства сложных эфиров

Сложные эфиры устойчивы в нейтральной среде, но легко разлагаются при нагревании в присутствии кислот или в присутствии щелочей.

В присутствии кислот гидролиз сложных эфиров протекает как реакция, обратная этерификации. при гидролизе сложных эфиров образуются спирты и карбоновые кислоты.

R-COO-R’ + H2O = R-COOH + R’-OH

Например , при гидролизе метилацетата образуются уксусная кислота и метанол.

При щелочном гидролизе сложных эфиров образуются соли карбоновых кислот и спирты.

Например , при щелочном гидролизе этилформиата образуются этанол и формиат натрия:

При щелочном гидролизе этилацетата образуются ацетат и этанол:

Щелочной гидролиз сложных эфиров — реакция, имеющая промышленное значение. Гидролиз жиров в присутствии оснований — древнейший способ получения мыла. Первые способы получения мыла связаны со смешиванием жира с золой. Один из основных компонентов животного жира — тристеарат глицерина. В щелочной среде тристеарат глицерина разлагается на глицерин и соль стеариновой кислоты:

2. Переэтерификация

Переэтерификация — это реакция превращения одного сложного эфира в другой под действием соответствующих спиртов в присутствии катализатора (кислоты или основания)

R-COO-CH3 + R’-OH = R-COOR’ + CH3-OH

3.Восстановление сложных эфиров

Сложные эфиры восстанавливаются с разрывом связи С-О карбоксильной группы. При этом образуется смесь спиртов.

Например, этилбензоат восстанавливается литийалюминийгидридом до бензилового спирта и этанола

Получение сложных эфиров

1. Этерификация карбоновых кислот спиртами

Карбоновые кислоты вступают в реакции с одноатомными и многоатомными спиртами с образованием сложных эфиров.

Например, этанол реагирует с уксусной кислотой с образованием этилацетата (этилового эфира уксусной кислоты):

2. Соли карбоновых кислот с галогеналканами

При взаимодействии солей карбоновых кислот с галогеналканами образуются сложные эфиры.

Например, при взаимодействии ацетата натрия с хлорметаном образуется метилацетат.

CH3-COONa + CH3-Cl = CH3-COOH + NaCl

Источник

Оцените статью