Что значит сформулировать признаки делимости

Что значит сформулировать признаки делимости

Признак делимости на 2 n
Число делится на n-ю степень двойки тогда и только тогда, когда число, образованное его последними n цифрами, делится на ту же степень.

Признак делимости на 5 n
Число делится на n-ю степень пятёрки тогда и только тогда, когда число, образованное его последними n цифрами, делится на ту же степень.

Признак делимости на 10 n -1
Разобьем число на группы по n цифр справа налево (в самой левой группе может быть от 1 до n цифр) и найдем сумму этих групп, считая их n-значными числами. Эта сумма делится на 10 n — 1 тогда и только тогда, когда само число делится на 10 n — 1.

Признак делимости на 10 n
Число делится на n-ю степень десятки тогда и только тогда, когда n его последних цифр — нули.

Признак делимости на 10 n +1
Разобьем число на группы по n цифр справа налево (в самой левой группе может быть от 1 до n цифр) и найдем сумму этих групп с переменными знаками, считая их n-числами. Эта сумма делится на 10 n + 1 тогда и только тогда, когда само число делится на 10 n + 1.

Признак делимости на 2
Число делится на 2 тогда и только тогда, когда его последняя цифра делится на 2, то есть является чётной.

Читайте также:  Что значит торговать фьючерсами

Признак делимости на 3
Число делится на 3 тогда и только тогда, когда сумма его цифр делится на 3.

Признак делимости на 4
Число делится на 4 тогда и только тогда, когда число из двух последних его цифр нули или делится на 4.

Признак делимости на 5
Число делится на 5 тогда и только тогда, когда последняя цифра делится на 5 (то есть равна 0 или 5).

Признак делимости на 6
Число делится на 6 тогда и только тогда, когда оно делится на 2 и на 3.

Признак делимости на 7
Число делится на 7 тогда и только тогда, когда результат вычитания удвоенной последней цифры из этого числа без последней цифры делится на 7 (например, 259 делится на 7, так как 25 — (2 · 9) = 7 делится на 7).

Признак делимости на 8
Число делится на 8 тогда и только тогда, когда три его последние цифры — нули или образуют число, которое делится на 8.

Признак делимости на 9
Число делится на 9 тогда и только тогда, когда сумма его цифр делится на 9.

Признак делимости на 10
Число делится на 10 тогда и только тогда, когда оно оканчивается на ноль.

Признак делимости на 11
Число делится на 11 тогда и только тогда, когда сумма цифр с чередующимися знаками делится на 11 (то есть 182919 делится на 11, так как 1 — 8 + 2 — 9 + 1 — 9 = -22 делится на 11) — следствие факта, что все числа вида 10 n при делении на 11 дают в остатке (-1) n .

Признак делимости на 12
Число делится на 12 тогда и только тогда, когда оно делится на 3 и на 4.

Признак делимости на 13
Число делится на 13 тогда и только тогда, когда число его десятков, сложенное с учетверённым числом единиц, кратно 13 (например, 845 делится на 13, так как 84 + (4 · 5) = 104 делится на 13).

Признак делимости на 14
Число делится на 14 тогда и только тогда, когда оно делится на 2 и на 7.

Признак делимости на 15
Число делится на 15 тогда и только тогда, когда оно делится на 3 и на 5.

Признак делимости на 17
Число делится на 17 тогда и только тогда, когда число его десятков, сложенное с увеличенным в 12 раз числом единиц, кратно 17 (например, 29053→2905+36=2941→294+12=306→30+72=102→10+24=34. Поскольку 34 делится на 17, то и 29053 делится на 17). Признак не всегда удобен, но имеет определенное значение в математике. Есть способ немного попроще – Число делится на 17 тогда и только тогда, когда разность между числом его десятков и упятеренным числом единиц, кратно 17(например, 32952→3295-10=3285→328-25=303→30-15=15. поскольку 15 не делится на 17, то и 32952 не делится на 17)

Признак делимости на 19
Число делится на 19 тогда и только тогда, когда число его десятков, сложенное с удвоенным числом единиц, кратно 19 (например, 646 делится на 19, так как 64 + (6 · 2) = 76 делится на 19).

Признак делимости на 23
Число делится на 23 тогда и только тогда, когда число его сотен, сложенное с утроенным числом десятков, кратно 23 (например, 28842 делится на 23, так как 288 + (3 * 42) = 414 продолжаем 4 + (3 * 14) = 46 очевидно делится на 23).

Признак делимости на 25
Число делится на 25 тогда и только тогда, когда две его последние цифры делятся на 25 (то есть образуют 00, 25, 50 или 75)или число кратно 5.

Признак делимости на 99
Разобьем число на группы по 2 цифры справа налево (в самой левой группе может быть одна цифра) и найдем сумму этих групп, считая их двузначными числами. Эта сумма делится на 99 тогда и только тогда, когда само число делится на 99.

Признак делимости на 101
Разобьем число на группы по 2 цифры справа налево (в самой левой группе может быть одна цифра) и найдем сумму этих групп с переменными знаками, считая их двузначными числами. Эта сумма делится на 101 тогда и только тогда, когда само число делится на 101. Например, 590547 делится на 101, так как 59-05+47=101 делится на 101).

Рейтинг: 3.5/5 (Всего оценок: 207)

Источник

Признаки делимости чисел

В данной публикации мы рассмотрим признаки делимости на числа от 2 до 11, сопроводив их примерами для лучшего понимания.

Признак делимости – это алгоритм, используя который можно сравнительно быстро определить, является ли рассматриваемое число кратным заранее заданному (т.е. делится ли на него без остатка).

Признак делимости на 2

Число делится на 2 тогда и только тогда, когда его последняя цифра является четной, т.е. также делится на два.

Примеры:

    4, 32, 50, 112, 2174 – последние цифры этих чисел четные, значит они делятся на 2.

Признак делимости на 3

Число делится на 3 тогда и только тогда, когда сумма всех его цифр, также, делится на три.

Примеры:

    18 – делится на 3, т.к. 1+8=9, а число 9 делится на 3 (9:3=3).

Признак делимости на 4

Двузначное число

Число делится на 4 тогда и только тогда, когда сумма удвоенной цифры в разряде его десятков и цифры в разряде единиц, также, делится на четыре.

  • 64 – делится на 4, т.к. 6⋅2+4=16, а 16:4=4.
  • 35 – не делится на 4, т.к. 3⋅2+5=11, а .

Число разрядов больше 2

Число кратно 4, когда две его последние цифры образуют число, делящееся на четыре.

    344 – делится на 4, т.к. 44 кратно 4 (по алгоритму выше: 4⋅2+4=12, 12:4=3).

Примечание:

Число делится на 4 без остатка, если:

  • в его последнем разряде стоят цифры 0, 4 или 8, а предпоследний разряд при этом является четным;
  • в последнем разряде – 2 или 6, а в предпоследнем – нечетные цифры.

Признак делимости на 5

Число делится на 5 тогда и только тогда, когда его последняя цифра – это 0 или 5.

Примеры:

    10, 65, 125, 300, 3480 – делятся на 5, т.к. оканчиваются на 0 или 5.

Признак делимости на 6

Число делится на 6 тогда и только тогда, когда он одновременно кратно и двум, и трем (см. признаки выше).

Примеры:

  • 486 – делится на 6, т.к. делится на 2 (последняя цифра 6 – четная) и на 3 (4+8+6=18, 18:3=6).
  • 712 – не делится на 6, т.к. оно кратно только 2.
  • 1345 – не делится на 6, т.к. не является кратным ни 2, ни 3.

Признак делимости на 7

Число делится на 7 тогда и только тогда, когда сумма утроенного числа его десятков и цифры в разряде единиц, также, делится на семь.

  • 91 – делится на 7, т.к. 9⋅3+1=28, а 28:7=4.
  • 105 – делится на 7, т.к. 10⋅3+5=35, а 35:7=5 (в числе 105 – десять десятков).
  • 812 – делится на 7. Здесь следующая цепочка: 81⋅3+2=245, 24⋅3+5=77, 7⋅3+7=28, а 28:7=4.
  • 302 – не делится на 7, т.к. 30⋅3+2=92, 9⋅3+2=29, а число 29 на 7 не делится.

Признак делимости на 8

Трехзначное число

Число делится на 8 тогда и только тогда, когда сумма цифры в разряде единиц, удвоенной цифры в разряде десятков и учетверенной в разряде сотен делится на восемь.

  • 264 – делится 8, т.к. 2⋅4+6⋅2+4=24, а 24:8=3.
  • 716 – не делится 8, т.к. 7⋅4+1⋅2+6=36, а .

Число разрядов больше 3

Число делится на 8, когда три последние цифры образуют число, делящееся на 8.

  • 2336 – делится на 8, т.к. 336 кратно 8.
  • 12547 – не кратно 8, т.к. 547 не делится без остатка на восемь.

Признак делимости на 9

Число делится на 9 тогда и только тогда, когда сумма всех его цифр, также, делится на девять.

Примеры:

  • 324 – делится на 9, т.к. 3+2+4=9, а 9:9=1.
  • 921 – не делится на 9, т.к. 9+2+1=12, а

Признак делимости на 10

Число делится на 10 тогда и только тогда, когда оно оканчивается на ноль.

Примеры:

  • 10, 110, 1500, 12760 – кратные 10 числа, последняя цифра – 0.
  • 53, 117, 1254, 2763 – не делятся на 10.

Признак делимости на 11

Число делится на 11 тогда и только тогда, когда модуль разности сумм четных и нечетных разрядов равен нулю или делится на одиннадцать.

Примеры:

  • 737 – делится на 11, т.к. |(7+7)-3|=11, 11:11=1.
  • 1364 – делится на 11, т.к. |(1+6)-(3+4)|=0.
  • 24587 – не делится на 11, т.к |(2+5+7)-(4+8)|=2, а 2 не делится на 11.

Источник

Признаки делимости чисел

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Что такое «признак делимости»

Признак делимости числа — это такая особенность числа, которая еще до выполнения деления позволяет определить, кратно ли число делителю.

Истинный путь джедая, чтобы зря не пыхтеть над числами, которые в конечном итоге не делятся.

Однозначные, двузначные и трехзначные числа

Однозначное число — это такое число, в составе которого один знак (одна цифра). Девять однозначных натуральных чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9.

Двузначные числа — такие, в составе которых два знака (две цифры). Цифры могут повторяться или быть различными.

Трехзначные числа — числа, в составе которых три знака (три цифры).

Чётные и нечётные числа

Число называют четным тогда, когда оно делится на два без остатка. А нечетные числа — те, что на два без остатка не делятся. Все просто!

  • Число «0» считается четным числом.
  • 0, 8, 24, 66, 88, 100, 120 — чётные.
  • 1, 7, 31, 75, 91, 111, 311 — нечётные.

Признаки делимости чисел

Признак делимости на 2. Сразу можно сказать, что число делится на 2, если последняя цифра четная.

  • Число 51352 можно разделить на 2, так как последняя цифра (2) делится на 2 без остатка.

Признак делимости на 3. Сумма цифр числа должна делиться на 3.

  • 20715 можно поделить на 3, так как 2 + 0 + 7 + 1 + 5 = 15 делится на 3.

Признаки делимости на 4. Число делится на 4, если две последние цифры — 0 или если они образуют цифру, которая делится на 4.

  • 84100 делится на 4, так как в конце стоят два нуля.
  • Число 5324 и 1108 тоже делятся на 4, так как последние цифры образуют числа (24 и 08), которые делятся на 4.

Признаки делимости на 5. Число делится на 5, если заканчивается на 0 или 5.

  • 540 и 545 делятся на 5.

Признак делимости на 6. На 6 делятся те числа, которые могут одновременно делится на 2 и на 3.

  • Число 612 делится на 2 и на 3.

Признаки делимости на 8. Число делится на 8, если три последних цифры — 0 или если они образуют число, которое делится на 8.

  • 43000 делится на 8, так как 43(000) оканчивается нулями
  • 8128 — тоже делится на 8: последние три цифры образуют число 128, которое делится на 8.

Признак делимости на 9. Число делится на 9, если сумма цифр делится на 9.

  • 1737 — сумма цифр 1 + 7 + 3 + 7 = 18. 18 делится на 9.

Признаки делимости на 10, 100. Числа, которые заканчиваются на 0, 00, 000 делятся на 10, 100, 1000 и так далее.

  • 890 делится на 10.
  • 1200 делится на 100.

Курсы обучения математике помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.

Источник

Делимость чисел. Признаки делимости. Основная теорема арифметики

В этой статье – необходимая теория для решения задачи 18 Профильного ЕГЭ по математике. Но это не все. Знания о числах и их свойствах, признаки делимости и формула деления с остатком могут пригодиться вам при решении многих задач ЕГЭ.
Повторим еще раз, какие бывают числа.

Натуральные числа — это числа 1,2,3, . – те, что мы используем для счёта предметов. Ноль не является натуральным числом. Множество натуральных чисел обозначается .

Целые числа — это 0,±1,±2,±3 . Множество целых чисел обозначается .

Рациональные — числа, которые можно записать в виде
дроби , где – целое, а – натуральное.
Например, . Рациональные числа – это периодические десятичные дроби. Множество рациональных чисел обозначается .

Иррациональные числа – те, которые нельзя записать в виде или в виде периодической десятичной дроби. Числа – иррациональные.
Множества рациональных и иррациональных чисел вместе образуют множество действительных чисел .

Число делится на число , если найдется такое число такое, что . Например, 15 делится на 3, а 49 делится на 7. Обозначение:

— Если делится на , то число называется делителем числа .

— Если числа и делятся на , то тоже делится на .

— Если числа и делятся на , а и – целые, то тоже делится на .

Формула деления с остатком. Если , то число делится на с остатком .

Например, при делении 9 на 4 мы получаем частное 2 и остаток 1, то есть 9 = 4∙2 + 1.

Четные числа – целые числа, которые делятся на 2. Любое четное число можно записать в виде , где – целое.

Нечетные числа – те целые числа, что не делятся на 2. Любое нечетное число можно записать в виде , где – целое.

Простые числа – те, что делятся только на себя и на единицу. Единица не является ни простым, ни составным числом. Простые числа: 2, 3, 5, 7, 11, 13, 17, 19…

Числа называются взаимно простыми, если они не имеют общих делителей, кроме 1.

Любое натуральное число можно разложить на простые множители.

Например, 72 = 2∙2∙2∙3∙3, а 98 = 2∙7∙7.

Основная теорема арифметики: Любое натуральное число можно представить в виде произведения простых делителей, взятых в натуральных степенях, причем это разложение единственно.

Например, 72 = 2³∙3².

Количество делителей натурального числа равно .

Наименьшее общее кратное двух чисел (НОК) — это наименьшее число, которое делится на оба данных числа.

Наибольший общий делитель двух чисел (НОД) — это наибольшее число, на которое делятся два данных числа.

последняя цифра числа четная;

сумма цифр числа делится на 3;

число заканчивается на 0 или на 5;

число, составленное из двух последних цифр числа , делится на 4;

число, составленное из трех последних цифр числа , делится на 8;

сумма цифр числа делится на 9;

последняя цифра числа равна 0;

суммы цифр на четных и нечетных позициях числа равны или их разность кратна 11.

Источник

Оцените статью