Что значит резистор закорочен

Анализ неисправности компонентов

Работа технического специалиста часто включает в себя «поиск и устранение неисправностей» (troubleshooting, обнаружение и устранение проблемы) в неисправных схемах. Хорошее устранение неисправностей – это требующие больших усилий и вознаграждаемые усилия, требующие глубокого понимания основных концепций, способности формулировать гипотезы (предполагаемые объяснения, почему схема не работает), способности оценивать ценность различных гипотез на основе их вероятности (насколько одна конкретная причина может быть вероятнее другой), а также творческое начало в применении решения для исправления проблемы.

Несмотря на то, что эти навыки можно преобразовать в научную методологию, большинство опытных специалистов по устранению неполадок согласятся, что устранение неисправностей требует особого искусства, и что для полного развития этого искусства могут потребоваться годы опыта.

Обязательный навык – это интуитивное понимание того, как неисправности компонентов влияют на цепи в различных конфигурациях. Мы рассмотрим некоторые влияния неисправностей компонентов как в последовательных, так и в параллельных цепях здесь, а затем в большей степени в конце главы «Последовательно-параллельные комбинированные цепи».

Анализ неисправностей в простой последовательной цепи

Рисунок 1 – Простая последовательная схема

Когда все компоненты в этой цепи функционируют надлежащим образом, мы можем математически определить все токи и падения напряжения:

Рисунок 2 – Таблица параметров последовательной цепи

Закороченные компоненты в последовательной цепи

Теперь предположим, что R2 выходит из строя, создавая короткое замыкание. Короткое замыкание означает, что резистор теперь работает как простой кусок провода с небольшим сопротивлением или без него. Схема будет вести себя так, как если бы к R2 была подключена «перемычка» (если вам интересно, «перемычка» – это общий термин для временного подключения проводов в цепи). Что вызывает короткое замыкание в R2, в этом примере для нас не важно; нам интересно только его влияние на схему:

Читайте также:  Что значит пролетарский офицер

Рисунок 3 – Закороченный компонент в последовательной цепи

Если R2 закорочен либо перемычкой, либо из-за неисправности внутренней части резистора, общее сопротивление цепи уменьшится. Поскольку выходное напряжение батареи является постоянным (по крайней мере, в нашем идеальном моделировании), уменьшение общего сопротивления цепи означает, что общий ток цепи должен увеличиться:

Рисунок 4 – Таблица параметров последовательной цепи в случае закороченного компонента

Когда ток в цепи увеличивается с 20 мА до 60 мА, также увеличивается падение напряжения на R1 и R3 (которые не изменили сопротивления), поскольку на этих двух резисторах падают все 9 вольт. R2, обойденный очень низким сопротивлением перемычки, эффективно исключается из схемы, сопротивление между его выводами снижается до нуля. Таким образом, падение напряжения на R2 даже при увеличенном общем токе равно нулю вольт.

Оборванные компоненты в последовательной цепи

И напротив, если R2 выйдет из строя, создав «разрыв» (сопротивление возрастет почти до бесконечности), это также вызовет сильные изменения в остальной части схемы:

Рисунок 5 – Оборванный компонент в последовательной цепи Рисунок 6 – Таблица параметров последовательной цепи в случае оборванного компонента

Когда резистор R2 имеет бесконечное сопротивление, а общее сопротивление является суммой всех отдельных сопротивлений в последовательной цепи, общий ток уменьшается до нуля. При нулевом токе цепи отсутствует ток, вызывающий падение напряжения на R1 или R3. На выводах R2, наоборот, появится полное напряжение питания цепи.

Анализ неисправностей в простой параллельной цепи

Мы можем применить тот же метод анализа до/после и к параллельным цепям. Сначала мы определяем, как должна вести себя исправная параллельная цепь.

Рисунок 7 – Простая параллельная схема Рисунок 8 – Таблица параметров параллельной цепи

Оборванные компоненты в параллельной цепи

Предположим, что в этой параллельной цепи R2 «оборван», последствия будут следующими:

Рисунок 9 – Оборванный компонент в параллельной цепи Рисунок 10 – Таблица параметров параллельной цепи в случае оборванного компонента

Обратите внимание, что в этой параллельной цепи оборванная ветвь влияет только на ток через эту ветвь и общий ток цепи. Общее напряжение, одинаково распределяемое между всеми компонентами в параллельной цепи, будет одинаковым для всех резисторов. Из-за того, что источник напряжения имеет тенденцию поддерживать неизменное напряжение, его напряжение не изменится и, будучи подключенным параллельно со всеми резисторами, он будет поддерживать все напряжения на резисторах такими же, как и раньше: 9 вольт. Поскольку это напряжение является единственным общим параметром в параллельной цепи, а другие резисторы не изменили значения сопротивлений, их токи остаются неизменными.

Применительно к домашнему освещению

Вот что происходит в схеме домашнего освещения: все лампы получают рабочее напряжение от силовой проводки, проложенной параллельно. Включение и выключение одной лампы (одна ветвь в этой параллельной цепи разрывается и восстанавливается) не влияет на работу других ламп в комнате, только на ток в этой одной лампе (цепь ветви) и на общий ток, питающий все лампы в комнате.

Рисунок 11 – Домашнее освещение

Закороченные компоненты в параллельной цепи

В идеальном случае (с идеальными источниками напряжения и соединительным проводом с нулевым сопротивлением) закороченные резисторы в простой параллельной цепи также не будут влиять на то, что происходит в других ветвях цепи. В реальной жизни эффект не совсем такой, и мы увидим почему на следующем примере:

Рисунок 12 – Закороченный компонент в параллельной цепи Рисунок 13 – Таблица параметров параллельной цепи в случае закороченного компонента

Закороченный резистор (сопротивление 0 Ом) теоретически будет потреблять бесконечный ток от любого конечного источника напряжения (I = E/0). В этом случае нулевое сопротивление R2 также уменьшает общее сопротивление цепи до нуля ом, увеличивая общий ток до бесконечности. Однако пока источник напряжения остается стабильным на уровне 9 вольт, токи других ветвей (IR1 и IR3) останутся неизменными.

Предположения о неидеальности

Однако критическое допущение в этой «идеальной» схеме состоит в том, что источник питания будет поддерживать неизменное номинальное напряжение при подаче бесконечного значения тока на короткозамкнутую нагрузку. Это просто нереально. Даже если короткое замыкание имеет небольшое сопротивление (в отличие от абсолютно нулевого сопротивления), ни один реальный источник напряжения не может выдерживать огромную перегрузку по току и одновременно поддерживать стабильное напряжение.

Это в первую очередь связано с внутренним сопротивлением, присущим всем источникам электроэнергии, которое связано с физическими свойствами материалов, из которых они построены:

Рисунок 14 – Неидеальный источник напряжения

Эти внутренние сопротивления, какими бы маленькими они ни были, превращают нашу простую параллельную схему в последовательно-параллельную комбинированную схему. Обычно внутреннее сопротивление источников напряжения достаточно мало, чтобы им можно было спокойно пренебречь, но когда возникают большие токи, появляющиеся из-за короткого замыкания компонентов, влияние внутреннего сопротивления источника становится очень заметным.

В этом случае закороченный R2 приведет к тому, что почти всё напряжение упадет на внутреннем сопротивлении батареи, при этом почти не останется напряжения на резисторах R1, R2 и R3:

Рисунок 15 – Закороченный компонент в параллельной цепи при неидеальных условиях Рисунок 16 – Таблица параметров параллельной цепи в случае закороченного компонента при неидеальных условиях

Достаточно сказать, что преднамеренное прямое короткое замыкание на клеммах любого источника напряжения – плохая идея. Даже если возникающий в результате сильный ток (тепло, вспышки, искры) не причинит вреда людям, находящимся поблизости, источник напряжения, скорее всего, будет поврежден, если только он не был специально разработан для защиты от коротких замыканий, чего нет у большинства источников напряжения.

В конечном итоге, в этой книге я проведу вас через анализ цепей без использования каких-либо значений, то есть через анализ последствий неисправностей компонентов в цепи, не зная точно, сколько вольт выдает батарея, сколько ом сопротивления в ней, в каждом резисторе и т.д. Этот раздел служит вводным шагом к такому анализу.

В то время как обычное применение закона Ома и правил последовательных и параллельных цепей выполняется с числовыми значениями («количественно»), этот новый вид анализа без точных чисел я называю качественным анализом. Другими словами, мы будем анализировать качества эффектов в цепи, а не их точные количества. Результатом для вас станет гораздо более глубокое интуитивное понимание работы электрических схем.

Источник

Что значит резистор закорочен

Анализ цепей с неисправными компонентами

Любому радиолюбителю очень важно интуитивное понимание того, как неисправные компоненты влияют на различные конфигурации цепей. В данной статье мы исследуем только некоторые эффекты воздействия неисправных компонентов на последовательные и параллельные цепи, более подробно эта тема будет раскрыта позднее, в статьях про последовательно-параллельные цепи.

Давайте начнем с простой последовательной цепи:

Если все компоненты функционируют должным образом, то мы математически можем определить все токи и напряжения этой схемы:

Теперь предположим, что резистор R2 у нас короткозамкнут. Короткое замыкание означает что резистор сейчас действует как обычный провод, который практически не имеет сопротивления. Схема в этом случае будет вести себя так, как будто параллельно резистору подключена «перемычка» («Перемычка» — это общий термин для временно подключенного провода в цепи). Причина короткого замыкания в этом примере для нас не имеет значения, нам важно только его влияние на схему:

При закороченном резисторе R2 общее сопротивление цепи уменьшится. Так как напряжение, производимое батареей, является величиной постоянной, снижение общего сопротивления вызовет увеличение общей силы тока.

Поскольку сила тока в цепи увеличилась с 20 до 60 миллиампер, увеличится и напряжение на резисторах R1 и R3 (которые не изменили своего сопротивления). Резистор R2, закороченный перемычкой, фактически устраняется из цепи, так как его сопротивление равно нулю. Напряжение на этом резисторе так же будет иметь нулевое значение.

Если резистор R2 будет не замкнут а «оборван», то его сопротивление увеличится до бесконечности:

При бесконечном сопротивлении резистора R2 общее сопротивление последовательной цепи так же будет бесконечно (для последовательной цепи Rобщ = R1 + R2 + . Rn). Общая сила тока в этом случае будет иметь нулевое значение, что означает отсутствие в цепи потока электронов, способного произвести напряжение на резисторах R1 и R3. Полное напряжение батареи проявится на выводах оборванного резистора R2.

Аналогичный метод анализа можно применить и к параллельной цепи. Для начала мы проанализируем «исправную» параллельную цепь:

Если предположить, что резистор R2 в этой цепи «оборван», то последствия будут следующими:

Заметьте, что «оборванная» ветвь нашей параллельной цепи влияет только на ток этой ветки и на общий ток схемы. В связи с тем, что напряжение в параллельной цепи одинаково на всех ее компонентах, вышедший из строя резистор R2 ни как не повлияет на напряжения резисторов R1 и R3 — оно останется прежним — 9 вольт. Отсюда следует, что при неизменных значениях напряжения и сопротивления резисторов R1 и R3 величина проходящего через них тока также не изменится.

Такая ситуация аналогична домашней системе освещения, в которой все лампочки получают рабочее напряжение от силовых проводов, смонтированных параллельным способом. Включение и выключение лампочки в одной комнате этой системы (включается и выключается одна ветвь параллельной цепи) не влияет на работу ламп в других комнатах. Данное действие затрагивает только ток этой лампы, и общий ток системы освещения:

Теперь давайте рассмотрим короткое замыкание одного из резисторов в простой параллельной цепи. В идеальном случае (с идеальным источником напряжения и нулевым сопротивление соединительных проводов), короткозамкнутый резистор в одной из ветвей этой цепи не повлияет на другие ее ветви. Но это в идеале, в реальности же эффект будет не совсем таким, а почему, мы увидим в следующих примерах:

Короткозамкнутый резистор (сопротивление которого равно 0 Ом) теоретически потребляет бесконечный ток от любого источника напряжения (I = U/0). В нашем случае нулевое сопротивление резистора R2 уменьшает общее сопротивление цепи до нуля, увеличивая тем самым общую силу тока до бесконечности. Пока источник напряжения поддерживает свою величину на уровне 9 вольт, токи оставшихся двух ветвей цепи (R1 и R3) не изменятся.

Отличительной особенностью этой «идеальной» схемы является то, что при подаче бесконечного количества электронов (тока) на короткозамкнутую нагрузку, напряжение ее источника питания остается неизменным. В реальной жизни такое невозможно. Даже если короткозамкнутый резистор имеет небольшое сопротивление (не нулевое), никакой реальный источник напряжения не сможет одновременно выдержать огромные перегрузки по току и поддержать постоянную величину напряжения. Причиной всему этому служит внутреннее сопротивление, которое является неотъемлемой частью всех без исключения источников электрической энергии:

Внутренние сопротивления источников питания превращают простые параллельные цепи в последовательно-параллельные. Такие сопротивления как правило очень малы чтобы оказывать заметное влияние на работу схемы, но при больших токах, которые возникают вследствие замыкания компонентов, их влияние многократно увеличивается. В нашем случае, короткое замыкание резистора R2 приведет к тому, что практически все напряжение сосредоточится на внутреннем сопротивлении источника, а резисторы R1, R2 и R3 останутся почти без напряжения:

Следует отметить, что намеренное короткое замыкание через контакты любого источника напряжения — это плохая идея. Даже если полученный в результате такого замыкания ток (высокая температура, вспышки и искры) не причинит вреда находящимся поблизости людям, источник питания, скорее всего, будет поврежден, если он не был специально разработан для обработки коротких замыканий.

В последующих статьях мы подведем вас к анализу схем с неизвестными величинами, т. е. к анализу последствий отказов компонентов схем, в которых вам неизвестны значения напряжений источников питания, сопротивлений резисторов и т.д. Данная статья служит первым шагом к такому анализу.

В то время как обычный анализ (с применением Закона Ома и принципов последовательных и параллельных цепей), базирующийся на численных величинах — является количественным анализом, анализ схем с неизвестными величинами можно назвать качественным анализом. Другими словами, мы будем анализировать качественное влияние неисправностей на цепь, а не точные величины. В конечном итоге вы добьетесь глубокого интуитивного понимания работы электрической схемы.

Источник

Оцените статью