Что значит решить уравнение это значит найти все его корни или доказать что

Содержание
  1. Что такое уравнение и корни уравнения? Как решить уравнение?
  2. Что такое уравнение? Смысл и понятия.
  3. Правила уменьшения или увеличения уравнения на определенное число.
  4. Правила уменьшения или увеличения уравнения в несколько раз.
  5. Как решать уравнения? Алгоритм действий.
  6. Уравнения с одной переменной
  7. Определение уравнения. Корни уравнения
  8. Пример 1.
  9. Пример 2.
  10. Пример 3.
  11. Равносильность уравнений
  12. Линейные уравнения
  13. Пример 1.
  14. Пример 2.
  15. Квадратные уравнения
  16. Пример 1.
  17. Пример 2.
  18. Пример 3.
  19. Рациональные уравнения
  20. Пример:
  21. Решение уравнения р(х) = 0 методом разложения его левой части на множители
  22. Пример 1.
  23. Пример 2.
  24. Решение уравнений методом введения новой переменной
  25. Пример 1.
  26. Пример 2.
  27. Биквадратные уравнения
  28. Пример:
  29. Решение задач с помощью составления уравнений
  30. Иррациональные уравнения
  31. Пример 1.
  32. Пример 2.
  33. Пример 3.
  34. Показательные уравнения
  35. Пример 1.
  36. Пример 2.
  37. Пример 3.
  38. Логарифмические уравнения
  39. Пример 1.
  40. Пример 2.
  41. Пример 3.
  42. Примеры решения показательно-логарифмических уравнений
  43. Пример 1.
  44. Пример 2.
  45. Пример 3.

Что такое уравнение и корни уравнения? Как решить уравнение?

Уравнения бывают разные. Вы изучите их многие виды в курсе математике, но все они решаются по одним правилам, эти правила мы сейчас рассмотрим подробно.

Что такое уравнение? Смысл и понятия.

Узнаем сначала все понятия, связанные с уравнением.

Определение:
Уравнение – это равенство, содержащее переменные и числовые значения.

Переменные (аргументы уравнения) или неизвестные уравнения – их обозначают в основном латинскими буквами (x, y, z, f и т.д.). При подстановки числового значения переменной в уравнение получаем верное равенство – это корень уравнения.

Решить уравнение – это значит найти все корни уравнения или доказать, что у данного уравнения нет корней.

Корни уравнения – это значение переменной при котором уравнение превращается в верное равенство.

Читайте также:  Намечается это что значит

Рассмотрим теперь, все термины на простом примере:
x+1=3

В данном случае x – переменная или неизвестное значение уравнения.

Можно устно решить данное уравнение. Какое надо число прибавить к 1, чтобы получить 3? Конечно, число 2. То есть наша переменная x =2. Корень уравнения равен 2. Проверим правильно ли мы решили уравнение? Чтобы проверить уравнение, нужно вместо переменной подставить полученный корень уравнения.

Получили верное равенство. Значит, правильно нашли корни уравнения.

Но бывают более сложные уравнения, которые устно не решить. Нужно прибегать к правилам решения уравнений. Рассмотрим правила решения уравнений ниже, которые объяснят нам как решать уравнения.

Правила уменьшения или увеличения уравнения на определенное число.

Чтобы понять правило рассмотрим подробно простой пример:
Решите уравнение x+2=7

Решение:
Чтобы решить данное уравнение нужно левую и правую часть уменьшить на 2. Это нужно сделать для того, чтобы переменная x осталась слева, а известные (т.е. числа) справа. Что значит уменьшить на 2? Это значит отнять от левой части двойку и одновременно от правой части отнять двойку. Если мы делаем какое-то действие, например, вычитание применяя его одновременно к левой части уравнения и к правой, то уравнение не меняет смысл.

Нужно остановиться на этом моменте подробно. Другими словами, мы +2 перенесли с левой части на правую и знак поменяли стало число -2.

Как проверить правильно ли вы нашли корень уравнения? Ведь не все уравнения будут простыми как данное. Чтобы проверить корень уравнения его значение нужно поставить в само уравнение.

Проверка:
Вместо переменной x подставим 5.

x+2=7
5+2=7
Получили верное равенство, значит уравнение решено верно.
Ответ: 5.

Разберем следующий пример:
Решите уравнение x-4=12.

Решение:
Чтобы решить данное уравнение нужно увеличить левую и правую часть уравнения на 4, чтобы переменная x осталось в левой стороне, а известные (т.е. числа) в правой стороне. Прибавим к левой и правой части число 4. Получим:

Другими словами, мы -4 перенесли из левой части уравнения в правую и получили +4. При переносе через равно знаки меняются на противоположные.

Теперь выполним проверку, вместо переменной x подставим в уравнение полученное число 16.
x-4=12
16-4=12
Ответ: 16

Очень важно понять правила переноса частей уравнения через знак равно. Не всегда нужно переносить числа, иногда нужно перенести переменные или даже целые выражения.

Рассмотрим пример:
Решите уравнение 4+3x=2x-5

Решение:
Чтобы решить уравнение необходимо неизвестные перенести в одну сторону, а известные в другую. То есть переменные с x будут в левой части, а числа в правой части.
Сначала перенесем 2x с правой стороны в левую сторону уравнения и получим -2x.

4+3x= 2x -5
4+3x -2x =-5

Далее 4 с левой стороны уравнения перенесем на правую сторону и получим -4
4 +3x-2x=-5
3x-2x=-5 -4

Теперь, когда все неизвестные в левой стороне, а все известные в правой стороне посчитаем их.
(3-2)x=-9
1x=-9 или x=-9

Сделаем проверку, правильно ли решено уравнение? Для этого вместо переменной x в уравнение подставим -9.
4+3x=2x-5
4+3⋅ (-9) =2⋅ (-9) -5
4-27=-18-5
-23=-23

Получилось верное равенство, уравнение решено верно.
Ответ: корень уравнения x=-9.

Правила уменьшения или увеличения уравнения в несколько раз.

Данное правило подходит тогда, когда вы уже посчитали все неизвестные и известные, но какой-то коэффициент остался перед переменной. Чтобы избавится от не нужного коэффициента мы применяем правило уменьшения или увеличения в несколько раз коэффициент уравнения.

Рассмотрим пример:
Решите уравнение 5x=20.

Решение:
В данном уравнение не нужно переносить переменные и числа, все компоненты уравнения стоят на месте. Но нам мешает коэффициент 5 который стоит перед переменной x. Мы не можем его просто взять и перенести в правую сторону уравнения, потому что между число 5 и переменно x стоит умножение 5⋅х. Если бы между переменной и числом стоял знак плюс или минус, мы могли бы 5 перенести вправо. Но мы так поступить не можем. За то мы можем все уравнение уменьшить в 5 раз или поделить на 5. Обязательно делим правую и левую сторону одновременно.

5x=20
5x :5 =20 :5
5:5x=4
1x=4 или x=4

Делаем проверку уравнения. Вместо переменной x подставляем 4.
5x=20
5⋅ 4 =20
20=20 получили верное равенство, корень уравнение найден правильно.
Ответ: x=4.

Рассмотрим следующий пример:
Найдите корни уравнения .

Решение:
Так как перед переменной x стоит коэффициент необходимо от него избавиться. Надо все уравнение увеличить в 3 раза или умножить на 3, обязательно умножаем левую часть уравнения и правую часть.

Сделаем проверку уравнения. Подставим вместо переменной x полученный корень уравнения 21.

7=7 получено верное равенство.

Ответ: корень уравнения равен x=21.

Следующий пример:
Найдите корни уравнения

Решение:
Сначала перенесем -1 в правую сторону уравнения относительно знака равно, а в левую сторону и знаки у них поменяются на противоположные.
Теперь нужно все уравнение умножить на 5, чтобы в коэффициенте перед переменной x убрать из знаменателя 5.

Далее делим все уравнение на 3.

3x :3 =45 :3
(3:3)x=15

Сделаем проверку. Подставим в уравнение найденный корень.

Как решать уравнения? Алгоритм действий.

Подведем итог разобранной теме уравнений, рассмотрим общие правила решения уравнений:

  1. Перенести неизвестные в одну сторону, а известные в другую сторону уравнения относительно равно.
  2. Преобразовать и посчитать подобные в уравнении, то есть переменные с переменными, а числа с числами.
  3. Избавиться от коэффициента при переменной если нужно.
  4. В итоге всех действий получаем корень уравнение. Выполняем проверку.

Эти правила действуют на любой вид уравнения (линейный, квадратный, логарифмический, тригонометрический, рациональные, иррациональные, показательные и другие виды). Поэтому важно понять эти простые правила и научиться ими пользоваться.

Источник

Уравнения с одной переменной

Уравнением с одной переменной — это равенство, содержащее только одну переменную. Корнем (или решением) уравнения называется такое значение переменной, при котором уравнение превращается в верное числовое равенство.

Содержание:

Определение уравнения. Корни уравнения

Равенство с переменной f(x) = g (х) называют уравнением с одной переменной х, если поставлена задача найти все те же значения х, при которых равенство с переменной обращается в верное числовое равенство. Всякое значение переменной, при котором выражения /(х) и g(x) принимают равные числовые значения, называют корнем уравнения.

Решить уравнение — это значит найти все его корни или доказать, что их нет.

Пример 1.

Уравнение 3 + х = 7 имеет единственный корень 4, так как при этом и только при этом значении переменной равенство 3 + х = 7 является верным.

Пример 2.

Уравнение (х — 1)(х — 2) = 0 имеет два корня: 1 и 2.

Пример 3.

Уравнение не имеет действительных корней.

Заметим, что можно говорить и о мнимых корнях уравнений. Так, уравнение имеет два мнимых корня: (см. п. 47). Всюду ниже речь идет только о действительных корнях уравнений.

Равносильность уравнений

Уравнения, имеющие одни и те же корни, называют равносильными. Равносильными считаются и уравнения, каждое из которых не имеет корней.

Например, уравнения х + 2 = 5 и х + 5 = 8 равносильны, так как каждое из них имеет единственный корень — число 3. Равносильны и уравнения — ни одно из них не имеет корней.

Уравнения неравносильны, так как первое имеет только один корень 6, тогда как второе имеет два корня: 6 и — 6.

В процессе решения уравнения его стараются заменить более простым, но равносильным данному. Поэтому важно знать, при каких преобразованиях данное уравнение переходит в равносильное ему уравнение.

Теорема 1.

Если в уравнении какое-нибудь слагаемое перенести из одной части в другую, изменив его знак, то получится уравнение, равносильное данному.

Например, уравнение равносильно уравнению

Теорема 2.

Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.

Например, уравнение равносильно уравнению (обе части первого уравнения мы умножили на 3).

Линейные уравнения

Линейным уравнением с одной переменной х называют уравнение вида

где — действительные числа; называют коэффициентом при переменной, свободным членом.

Для линейного уравнения могут представиться три случая:

1) ; в этом случае корень уравнения равен ;

2) ; в этом случае уравнение принимает вид , что верно при любом х, т. е. корнем уравнения служит любое действительное число;

3) ; в этом случае уравнение принимает вид , оно не имеет корней.

Многие уравнения в результате преобразований сводятся к линейным.

Пример 1.

Решить уравнение

Решение:

По теореме 1 (см. п. 135), данное уравнение равносильно уравнению . Если разделить обе части этого уравнения на коэффициент при х, то по теореме 2 получим равносильное данному уравнение . Итак, — корень уравнения.

Пример 2.

Решение:

Это уравнение сводится к линейному уравнению. Умножив обе части уравнения на 12 (наименьшее общее кратное знаменателей 3, 4, 6,12), получим

Квадратные уравнения

где — действительные числа, причем , называют квадратным уравнением. Если , то квадратное уравнение называют приведенным, если , то неприведенным. Коэффициенты имеют следующие названия: первый коэффициент, второй коэффициент, с — свободный член. Корни уравнения находят по формуле

Выражение называют дискриминантом квадратного уравнения (1). Если D О, то уравнение имеет два действительных корня.

В случае, когда D = О, иногда говорят, что квадратное уравнение имеет два одинаковых корня.

Используя обозначение , можно переписать формулу (2) в виде Если , то формулу (2) можно упростить:

Формула (3) особенно удобна, если — целое число, т. е. коэффициент — четное число.

Пример 1.

Решение:

Здесь . Имеем:

Так как , то уравнение имеет два корня, которые найдем по формуле (2):

Итак, — корни заданного уравнения.

Пример 2.

Решить уравнение

Решение:

Здесь По формуле (3) находим т. е. х = 3 — единственный корень уравнения.

Пример 3.

Решить уравнение

Решение:

Здесь Так как D 0, откуда х>3, и 5 — х > 0, откуда х 5, тогда как для уравнения (2) областью определения служит вся числовая прямая. Поэтому найденное значение х = 4, являющееся корнем уравнения (2), может оказаться посторонним корнем для уравнения (1). В данном случае именно это и происходит, поскольку х = 4 не принадлежит области определения уравнения (1) (не удовлетворяет неравенству х > 5). Итак, х = 4 — посторонний корень, т. е. заданное уравнение не имеет корней.

Рациональные уравнения

Уравнение f(x) = g(x) называют рациональным, если f(x) и g(x) — рациональные вьфажения. При этом если f(x) и g(x) — целые выражения, то уравнение называют целым; если же хотя бы одно из выражений f(х), g(x) является дробным, то рациональное уравнение f(x) = g(x) называют дробным.

Например, целыми являются линейные (см. п. 136), квадратные (см. п. 137) уравнения.

Чтобы решить рациональное уравнение, нужно:

1) найти общий знаменатель всех имеющихся дробей;

2) заменить данное уравнение целым, умножив обе его части на общий знаменатель;

3) решить полученное целое уравнение;

4) исключить из его корней те, которые обращают в нуль общий знаменатель.

Пример:

Решение:

Общим знаменателем имеющихся дробей является 2х(2 — х). Найдя дополнительные множители для каждой дроби, освободимся от знаменателей. Имеем:

Из уравнения находим (см. п. 137). Осталось проверить, обращают ли найденные корни выражение 2х(2 — х) в нуль, т. е. проверить выполнение условия Замечаем, что 2 не удовлетворяет этому условию, а 4 удовлетворяет. Значит, х = 4 — единственный корень уравнения.

Решение уравнения р(х) = 0 методом разложения его левой части на множители

Суть этого метода состоит в следующем. Пусть нужно решить уравнение р(х) = 0, где р(х) — многочлен степени . Предположим, что удалось разложить многочлен на множители:, где — многочлены более низкой степени, чем . Тогда уравнение р(х) = 0 принимает вид . Если — корень уравнения а потому хотя бы одно из чисел равно нулю.

Значит, — корень хотя бы одного из уравнений

Верно и обратное: если — корень хотя бы одного из уравнений то — корень уравнения т. е. уравнения р (х) = 0.

Итак, если , где — многочлены, то вместо уравнения р(х) = 0 нужно решить совокупность уравнений Все найденные корни этих уравнений, и только они, будут корнями уравнения р(х) = 0.

Пример 1.

Решить уравнение

Решение:

Разложим на множители левую часть уравнения. Имеем откуда

Значит, либо х + 2 = 0, либо . Из первого уравнения находим х = — 2, второе уравнение не имеет корней. Итак, получили ответ: -2.

Метод разложения на множители применим к любым уравнениям вида р(х) = 0, где р(х) необязательно многочлен. Пусть но среди выражений есть выражения более сложного вида, чем многочлены (например, иррациональные, логарифмические и т. д.). Среди корней уравнений могут быть посторонние для уравнения р(х) = 0.

Пример 2.

Решить уравнение

Решение:

Имеем ; значит, либо , либо .Из уравнения находим х = 0, из уравнения находим .

Но х = -3 не удовлетворяет исходному уравнению, так как при этом значении не определено выражение . Это посторонний корень.

Итак, уравнение имеет два корня: 3; 0.

Решение уравнений методом введения новой переменной

Суть этого метода поясним на примерах.

Пример 1.

Решение:

Положив , получим уравнение

откуда находим . Теперь задача сводится к решению совокупности уравнений

Первое квадратное уравнение не имеет действительных корней, так как его дискриминант отрицателен.

Из второго квадратного уравнения находим . Это корни заданного уравнения.

Пример 2.

Решение:

Положим , тогда

и уравнение примет вид

Решив это уравнение (см. п. 145), получим

Но . Значит, нам остается решить совокупность уравнений

Из первого уравнения находим , ; из второго уравнения получаем Тем самым найдены четыре корня заданного уравнения.

Биквадратные уравнения

Биквадратным уравнением называют уравнение вида

Биквадратное уравнение решается методом введения новой переменной: положив , придем к квадратному уравнению

Пример:

Решить уравнение .

Решение:

Положив , получим квадратное уравнение , откуда находим . Теперь задача сводится к решению совокупности уравнений Первое уравнение не имеет действительных корней, из второго находим Это — корни заданного биквадратного уравнения.

Решение задач с помощью составления уравнений

С помощью уравнений решаются многочисленные задачи, к которым приводят самые разнообразные вопросы физики, механики, экономики и т. д. Прежде всего напомним общий порядок решения задач с помощью уравнений.

1) Вводят переменные, т. е. буквами х, у, z обозначают неизвестные величины, которые либо требуется найти в задаче, либо они необходимы для отыскания искомых величин.

2) С помощью введенных переменных и данных в задаче чисел и их соотношений составляют систему уравнений (или одно уравнение).

3) Решают составленную систему уравнений (или уравнение) и из полученных решений отбирают те, которые подходят по смыслу задачи.

4) Если буквами х, у, z обозначили не искомые величины, то с помощью полученных решений находят ответ на вопрос задачи.

Задача 1.

Для перевозки 60 т груза из одного места в другое затребовали некоторое количество машин. Ввиду неисправности дороги на каждую машину пришлось грузить на 0,5 т меньше, чем предполагалось, поэтому дополнительно потребовались 4 машины. Какое количество машин было затребовано первоначально?

Решение: Обозначим через х количество машин, затребованных первоначально. Тогда на самом деле было вызвано (х + 4) машин. Так как надо было перевезти 60 т груза, то предполагалось, что на одну машину будут грузить т груза, а на самом деле грузили т груза, что на 0,5 т меньше, чем предполагалось. В результате мы приходим к уравнению

Это уравнение имеет два корня: х = -24, х = 20. Ясно, что по смыслу задачи значение х = —24 не подходит. Таким образом, первоначально было затребовано 20 машин.

Задача 2.

Моторная лодка, движущаяся со скоростью 20 км/ч, прошла расстояние между двумя пунктами по реке туда и обратно без остановок за 6 ч 15 мин. Расстояние между пунктами равно 60 км. Найти скорость течения реки.

Решение:

Пусть х км/ч — скорость течения реки. Тогда лодка, собственная скорость которой 20 км/ч, идет по течению со скоростью (20 + х) км/ч, а против течения — со скоростью (20 — х) км/ч. Время, за которое лодка пройдет путь между пунктами по течению, составит ч, а время, за которое лодка пройдет обратный путь, составит ч. Так как путь туда и обратно лодка проходит за 6 ч 15 мин, т. е. ч, приходим к уравнению

решив которое, находим два корня: х = 4, х = -4. Ясно, что значение х = -4 не подходит по смыслу задачи. Итак, скорость течения реки равна 4 км/ч.

Задача 3.

Найти двузначное число, зная, что цифра его единиц на 2 больше цифры десятков и что произведение искомого числа на сумму его цифр равно 144.

Решение:

Напомним, что любое двузначное число может быть записано в виде 10х + у, где х — цифра десятков, а у — цифра единиц. Согласно условию, если х — цифра десятков, то цифра единиц равна х + 2 и мы получаем

Решив это уравнение, найдем

Второй корень не подходит по смыслу задачи.

Итак, цифра десятков равна 2, цифра единиц равна 4; значит, искомое число равно 24.

Задача 4.

Двое рабочих, работая вместе, выполнили некоторую работу за 6 ч. Первый из них, работая отдельно, может выполнить всю работу на 5 ч скорее, чем второй рабочий, если последний будет работать отдельно. За сколько часов каждый из них, работая отдельно, может выполнить всю работу?

Решение:

Производительность труда, т. е. часть работы, выполняемая в единицу времени (обозначим ее через А), и время, необходимое для выполнения всей работы (обозначим его через t), — взаимно обратные величины, т. е. At = 1. Поэтому если обозначить через х ч время, необходимое для выполнения всей работы первому рабочему, а через (х + 5) ч — второму, то часть работы, выполняемая первым рабочим за 1 ч, равна , а часть работы, выполняемая вторым рабочим за 1 ч, равна Согласно условию, они, работая вместе, выполнили всю работу за 6 ч. Доля работы, выполненная за 6 ч первым рабочим, есть , а доля работы, выполненная за 6 ч вторым рабочим, есть Так как вместе они выполнили всю работу, т. е. доля выполненной работы равна 1, получаем уравнение

решив которое, найдем х = 10.

Итак, первый рабочий может выполнить всю работу за 10 ч, а второй — за 15 ч.

Задача 5.

Из сосуда емкостью 54 л, наполненного кислотой, вылили несколько литров и долили сосуд водой, потом опять вылили столько же литров смеси. Тогда в оставшейся в сосуде смеси оказалось 24 л чистой кислоты. Сколько кислоты вылили в первый раз?

Решение:

Пусть в первый раз было вылито х л кислоты. Тогда в сосуде осталось (54 — х) л кислоты. Долив сосуд водой, получили 54 л смеси, в которой растворилось (54 — х) л кислоты. Значит, в 1 л смеси содержится л кислоты (концентрация раствора). Во второй раз из сосуда вылили х л смеси, в этом количестве смеси содержалось л кислоты. Таким образом, в первый раз было вылито х л кислоты, во второй л кислоты, а всего

за два раза вылито 54 — 24 = 30 л кислоты. В результате приходим к уравнению

Решив это уравнение, найдем два корня: и . Ясно, что значение 90 не удовлетворяет условию задачи.

Итак, в первый раз было вылито 18 л кислоты.

Задача 6.

Имеется кусок сплава меди с оловом массой 12 кг, содержащий 45% меди. Сколько чистого олова надо прибавить к этому куску, чтобы получившийся новый сплав содержал 40% меди?

Решение:

Пусть масса добавленного олова составляет х кг. Тогда получится сплав массой (12 + х) кг, содержащий 40% меди. Значит, в новом сплаве имеется 0,4(12 + х) кг меди. Исходный сплав массой 12 кг содержал 45% меди, т. е. меди в нем было . Так как масса меди и в имевшемся, и в новом сплаве одна и та же, приходим к уравнению

Решив это уравнение, получим х = 1,5. Таким образом, к исходному сплаву надо добавить 1,5 кг олова.

Задача 7.

Имеется сталь двух сортов с содержанием никеля 5% и 40%. Сколько стали того и другого сорта надо взять, чтобы после переплавки получить 140 т стали с содержанием никеля 30% ?

Решение:

Пусть масса стали первого сорта равна х т, тогда стали второго сорта надо взять (140 — х) т. Содержание никеля в стали первого сорта составляет 5%; значит, в х т стали первого сорта содержится 0,05л; т никеля. Содержание никеля в стали второго сорта составляет 40%; значит, в (140 — х) т стеши второго сорта содержится 0,4 (140 — х) т никеля. По условию после соединения взятых двух сортов должно получиться 140 т стали с 30% -ным содержанием никеля, т. е. после переплавки в полученной стали должно быть 0,3 * 140 т никеля. Но это количество никеля складывается из 0,05л; т, содержащихся в стали первого сорта, и из 0,4 (140 — х) т, содержащихся в стали второго сорта. Таким образом, приходим к уравнению

0,05х + 0,4 (140 — х) = 0,3 * 140,

из которого находим х = 40. Следовательно, надо взять 40 т стали с 5% -ным и 100 т стали с 40% -ным содержанием никеля.

Иррациональные уравнения

Иррациональным называют уравнение, в котором переменная содержится под знаком радикала или под знаком возведения в дробную степень. Например, иррациональными являются уравнения

Используются два основных метода решения иррациональных уравнений:

1) метод возведения обеих частей уравнения в одну и ту же степень;

2) метод введения новых переменных (см. п. 147).

Метод возведения обеих частей уравнения в одну

и ту же степень состоит в следующем:

а) преобразуют заданное иррациональное уравнение к виду

б) возводят обе части полученного уравнения в п-ю степень:

в) учитывая, что , получают уравнение

г) решают уравнение и, в случае четного п, делают проверку, так как возведение обеих частей уравнения в одну и ту же четную степень может привести к появлению посторонних корней (см. п. 142). Эта проверка чаще всего осуществляется с помощью подстановки найденных значений переменной в исходное уравнение.

Пример 1.

Решить уравнение

Решение:

Возведем обе части уравнения в шестую степень; получим х — 3 = 64, откуда х = 67.

Проверка:

Подставив 67 вместо х в данное уравнение, получим , т. е. 2 = 2 — верное равенство.

Ответ: 67.

Пример 2.

Решение:

Преобразуем уравнение к виду

и возведем обе части его в квадрат. Получим

Еще раз возведем обе части уравнения в квадрат:

откуда

Проверка:

1) При х = 5 имеем

— верное равенство.

Таким образом, х = 5 является корнем заданного уравнения.

2) При х = 197 имеем Таким образом, х = 197 — посторонний корень.

Ответ: 5.

Пример 3.

Решение:

Применим метод введения новой переменной.

Положим и мы получаем уравнение , откуда находим

Теперь задача свелась к решению совокупности уравнений

Возведя обе части уравнения в пятую степень, получим х — 2 = 32, откуда х = 34.

Уравнение не имеет корней, поскольку под знаком возведения в дробную степень может содержаться только неотрицательное число, а любая степень неотрицательного числа неотрицательна.

Ответ: 34.

Показательные уравнения

Показательное уравнение вида

где равносильно уравнению f(х) = g(x).

Имеются два основных метода решения показательных уравнений:

1) метод уравнивания показателей, т. е. преобразование заданного уравнения к виду а затем к виду f(х) = g(x);

2) метод введения новой переменной.

Пример 1.

Решить уравнение

Решение:

Данное уравнение равносильно уравнению откуда находим Решив это квадратное уравнение, получим

Пример 2.

Решение:

Приведем все степени к одному основанию . Получим уравнение которое преобразуем к виду Уравнение равносильно уравнению х = 2х — 3, откуда находим х = 3.

Пример 3.

Решить уравнение

Решение:

Применим метод введения новой переменной. Так как ,то данное уравнение можно переписать в виде

Введем новую переменную, положив Получим квадратное уравнение с корнями Теперь задача сводится к решению совокупности уравнений

Из первого уравнения находим х = 2. Второе уравнение не имеет корней, так как при любых значениях х.

Ответ: 2.

Логарифмические уравнения

Чтобы решить логарифмическое уравнение вида

где нужно:

1) решить уравнение f(x) = g(x);

2) из найденных корней отобрать те, которые удовлетворяют неравенствам f(x) > 0 и g(x) > 0; остальные корни уравнения f(x) = g(x) являются посторонними для уравнения (1).

Имеются два основных метода решения логарифмических уравнений:

1) метод, заключающийся в преобразовании уравнения к виду затем к виду f(x) = g(x);

2) метод введения новой переменной.

Пример 1.

Решение:

Перейдем от заданного уравнения к уравнению и решим его. Имеем Проверку найденных значений х выполним с помощью неравенств Число -3 этим неравенствам удовлетворяет, а число 4 — нет. Значит, 4 — посторонний корень.

Ответ: -3.

Пример 2.

Решение:

Воспользовавшись тем, что сумма логарифмов равна логарифму произведения (см. п. 120), преобразуем уравнение к виду

Из последнего уравнения находим

Осталось сделать проверку. Ее можно выполнить с помощью системы неравенств

Подставив поочередно найденные значения -1 и -5,5 в эти неравенства, убеждаемся, что -1 удовлетворяет всем неравенствам, а -5,5 — нет, например при этом значении не выполняется первое неравенство. Значит, -5,5 — посторонний корень.

Ответ: -1.

Пример 3.

Решение:

Так как заданное уравнение можно переписать следующим образом:

Введем новую переменную, положив Получим

Но ; из уравнения находим х = 4.

Ответ: 4.

Примеры решения показательно-логарифмических уравнений

Пример 1.

Решение:

Область определения уравнения: х > 0. При этом условии выражения, входящие в обе части уравнения (1), принимают только положительные значения. Прологарифмировав обе части уравнения (1) по основанию 10, получим уравнение

равносильное уравнению (1). Далее имеем

Полагая получим уравнение , откуда Остается решить совокупность уравнений Из этой совокупности получим — корни уравнения (1).

Здесь применен метод логарифмирования, заключающийся в переходе от уравнения f(x) = g(x) к уравнению

Пример 2.

(2)

Решение:

Воспользовавшись определением логарифма, преобразуем уравнение (2) к виду

Полагая , получим уравнение корнями которого являются

Теперь задача сводится к решению совокупности уравнений

Так как , а -1 0 и мы получаем

если , то D = 0 и мы получаем , т. е. (поскольку ) .

Итак, если то действительных корней нет; если = 1, то ; если ,то ; если и , то

Пример 3.

При каких значениях параметра уравнение

имеет два различных отрицательных корня?

Решение:

Так как уравнение должно иметь два различных действительных корня его дискриминант должен быть положительным. Имеем

Значит, должно выполняться неравенство

По теореме Виета для заданного уравнения имеем

Так как, по условию, , то и

В итоге мы приходим к системе неравенств (см. п. 177):

Из первого неравенства системы находим (см. п. 180, 183) ; из второго ; из третьего . С помощью координатной прямой (рис. 1.107) находим, что либо , либо

Эта лекция взята со страницы полного курса лекций по изучению предмета «Математика»:

Смотрите также дополнительные лекции по предмету «Математика»:

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Источник

Оцените статью