- Что значит ребро кубика
- Свойства куба:
- Прямоугольный параллелепипед
- Пирамида
- Математика. 4 класс
- Геометрические фигуры. Куб.
- Куб — свойства, виды и формулы
- Элементы куба
- Грань
- Ребро
- Вершина
- Центр грани
- Центр куба
- Ось куба
- Диагональ куба
- Диагональ грани куба
- Объем куба
- Периметр куба
- Площадь поверхности
- Сфера, вписанная в куб
- Сфера, описанная вокруг куба
- Координаты вершин куба
- Свойства куба
Что значит ребро кубика
Куб – правильный многогранник, каждая грань которого представляет собой квадрат. Все ребра куба равны.
Свойства куба:
1. В кубе $6$ граней и все они являются квадратами.
2. Противоположные грани попарно параллельны.
3. Все двугранные углы куба – прямые.
4. Диагонали равны.
5. Куб имеет $4$ диагонали, которые пересекаются в одной точке и делятся в ней пополам.
6. Диагональ куба в $√3$ раз больше его ребра
7. Диагональ грани куба в $√2$ раза больше длины ребра.
Пусть $а-$длина ребра куба, $d-$диагональ куба, тогда справедливы формулы:
Площадь полной поверхности: $S_<п.п>=6а^2=2d^2$
Радиус сферы, описанной около куба: $R=/<2>$
Радиус сферы, вписанной в куб: $r=/<2>$
При увеличении всех линейных размеров куба в $k$ раз, его объём увеличится в $k^3$ раз.
При увеличении всех линейных размеров куба в $k$ раз, площадь его поверхности увеличится в $k^2$ раз.
Прямоугольный параллелепипед
Параллелепипед называется прямоугольным, если его боковые ребра перпендикулярны к основанию, а основания представляют собой прямоугольники.
1. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений (длины, ширины, высоты).
Формулы вычисления объема и площади поверхности прямоугольного параллелепипеда.
Чтобы были понятны формулы, введем обозначения:
$с$-высота(она же боковое ребро);
$S_<п.п>$-площадь полной поверхности;
$V=a·b·c$ – объем равен произведению трех измерений прямоугольного параллелепипеда.
Пирамида
Пирамидой называется многогранник, одна грань которого (основание) – многоугольник, а остальные грани (боковые) — треугольники, имеющие общую вершину.
Высотой ($h$) пирамиды является перпендикуляр, опущенный из ее вершины на плоскость основания.
Формулы вычисления объема и площади поверхности правильной пирамиды.
$h_a$ — высота боковой грани (апофема)
В основании лежат правильные многоугольники, рассмотрим их площади:
- Для равностороннего треугольника $S=√3>/<4>$, где $а$ — длина стороны.
- Квадрат $S=a^2$, где $а$ — сторона квадрата.
Задачи на нахождение объема составного многогранника:
- Разделить составной многогранник на несколько параллелепипедов.
- Найти объем каждого параллелепипеда.
- Сложить объемы.
Задачи на нахождение площади поверхности составного многогранника.
— Если можно составной многогранник представить в виде прямой призмы, то находим площадь поверхности по формуле:
Чтобы найти площадь основания призмы, надо разделить его на прямоугольники и найти площадь каждого.
— Если составной многогранник нельзя представить в виде призмы, то площадь полной поверхности можно найти как сумму площадей всех граней, ограничивающих поверхность.
Источник
Математика. 4 класс
Конспект урока
Математика, 4 класс
Перечень вопросов, рассматриваемых в теме:
Как распознавать и называть куб, его грани, ребра, вершины.?
Глоссарий по теме:
Куб — это многогранник, поверхность которого состоит из шести квадратов.
Грани куба – это стороны куба, которые представляют собой квадрат.
Ребра куба – это стороны граней куба.
Вершина куба— это точка, где сходятся три грани или точка, в которой сходятся три ребра куба.
Площадь фигуры – это часть плоскости, ограниченная замкнутой ломаной или кривой линией.
Периметр фигуры — это сумма длин всех сторон фигуры.
Основная и дополнительная литература по теме урока:
- Моро М.И., Бантова М.А. и др. Математика 4 класс. Учебник для общеобразовательных организаций М.; Просвещение, 2017. – с. 110
- Математика: Рабочая тетрадь для 4 класса/ О.А. Рыдзе, К.А. Краснянская. – М.; СПб.: Просвещение, 2012. – с. 26-32
Теоретический материал для самостоятельного изучения
Подумайте, на какие две группы можно разделить фигуры?
Верно, на плоские и объемные.
Назовите плоские геометрические фигуры.
Верно, квадрат, треугольник, прямоугольник.
Объемные фигуры называются – геометрическими телами.
Вы видите геометрическое тело «шар» и геометрическое тело «куб».
Внимательно посмотрите и скажите, из какой фигуры состоит поверхность куба?
Верно, поверхность куба состоит из квадратов, их называют гранями куба.
Посчитайте, сколько граней у куба.
Правильно, у куба 6 граней.
Стороны граней (квадратов) называют ребрами куба.
Посчитайте, сколько ребер у куба?
Верно, у куба 12 ребер.
Вершины граней – это вершины куба.
Посчитайте, сколько вершин у куба.
Правильно, у куба 8 (восемь) вершин.
Таким образом, у куба 6 граней, 12 ребер, 8 вершин.
Для того чтобы изготовить модель куба необходимо построить развертку куба.
И какого бы куб ни был роста, сшить костюм для него очень просто. Для начала же, сделав разметку, изготовьте раскройку – развертку. Шесть квадратов! Нехитрое дело. Но расклеить их надо умело.
Куб в жизни человека.
Где можно встретить куб? Здания чаше всего имеют кубическую форму, так что можно просто выглянуть в окно, и вы сразу увидите куб.
Самая знаменитая игрушка-головоломка «кубик-рубик».
Кристаллы поваренной соли имеют форму куба.
Выполним несколько тренировочных заданий.
1. Найдите и напишите номер того куба, который сделан из данной развёртки.
Правильный вариант/варианты (или правильные комбинации вариантов): 4
2. Выберите правильное утверждение.
а) площадь круга больше площади квадрата;
б) площадь круга меньше площади квадрата;
в) площади фигур равны.
Правильные варианты: б) площадь круга меньше площади квадрата.
Источник
Геометрические фигуры. Куб.
Куб или правильный гексаэдр – это правильный многогранник, у которого все грани это квадраты.
Куб является частным случаем параллелепипеда и призмы. 4 сечения куба имеют вид правильных
шестиугольников — это сечения через центр куба перпендикулярно 4-м главным диагоналям.
В кубе насчитывается шесть квадратов. Все вершины куба являются вершинами 3-х квадратов. То есть,
сумма плоских углов у каждой вершины = 270º.
Число сторон у грани – 4;
Общее число граней – 6;
Число рёбер примыкающих к вершине – 3;
Общее число вершин – 8;
Общее число рёбер – 12;
Предположим, что а – длина стороны куба, а d — диагональ, тогда:
Диагональ куба – это отрезок, который соединяет 2 вершины, которые симметричны относительно центра
Свойства куба.
- 4 сечения куба имеют вид правильных шестиугольников — они проходят сквозь центр куба
перпендикулярно четырём его главным диагоналям.
- В куб вписывают тетраэдр 2-мя способами. В любом из них 4-ре вершины тетраэдра всегда
совмещены с 4-мя вершинами куба и каждое из шести ребер тетраэдра принадлежат граням куба. В 1-м
случае каждая вершина тетраэдра принадлежит граням трехгранного угла, вершиной совпадающего с одной
из вершин куба. Во 2-м случае ребра тетраэдра, которые попарно скрещиваются принадлежат попарно
противоположным граням куба. Такой тетраэдр будет правильным, а его объём будет составлять треть от
- В куб вписывают октаэдр, при этом все 6 вершин октаэдра совмещаются с центрами 6-ти граней
- Куб вписывают в октаэдр, при этом все 8 вершин куба располагаются в центрах 8-ми граней
- В куб вписывают икосаэдр, притом 6 взаимно параллельных рёбер икосаэдра располагаются на
6-ти гранях куба, следующие 24 ребра располагаются внутри куба. Каждая из 12 вершин икосаэдра
располагается на 6-ти гранях куба.
Элементы симметрии куба.
Ось симметрии куба может пролегать или сквозь середины ребер, которые
параллельны, не принадлежащих одной из граней, или сквозь точку
пересечения диагоналей противолежащих граней. Центром симметрии
куба будет точка пересечения диагоналей куба.