Что значит разрывная функция

РАЗРЫВНАЯ ФУНКЦИЯ

— функция где Xи Y — топологич. пространства, не являющаяся непрерывной функцией на пространстве X. Среди разрывных действительных функций важные классы составляют Бэра классы, кусочно непрерывные функции, ступенчатые функции.

Р. ф. возникают, напр., при интегрировании по параметру элементарных функций (см. Дирихле разрывный множитель), при вычислении суммы функциональных рядов, членами к-рых являются элементарные функции, в частности при вычислении суммы тригонометрич. рядов, в задачах оптимального управления.

Математическая энциклопедия. — М.: Советская энциклопедия . И. М. Виноградов . 1977—1985 .

Смотреть что такое «РАЗРЫВНАЯ ФУНКЦИЯ» в других словарях:

РАЗРЫВНАЯ ФУНКЦИЯ — функция, имеющая разрыв в некоторых точках (см. Разрыва точка). У функций, встречающихся в применениях математики, точки разрыва обычно изолированы, но существуют функции, для которых все точки являются точками разрыва … Большой Энциклопедический словарь

разрывная функция — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN discontinuous function … Справочник технического переводчика

разрывная функция — функция, имеющая разрыв в некоторых точках (см. Разрыва точка). У функций, встречающихся в применениях математики, точки разрыва обычно изолированы, но существуют функции, для которых все точки являются точками разрыва. * * * РАЗРЫВНАЯ ФУНКЦИЯ… … Энциклопедический словарь

РАЗРЫВНАЯ ФУНКЦИЯ — функция, имеющая разрыв в нек рых точках (см. Разрыва точка). У функций, встречающихся в применениях математики, точки разрыва обычно изолированы, но существуют функции, для к рых все точки являются точками разрыва … Естествознание. Энциклопедический словарь

Читайте также:  Аст повышен что это значит кот

разрывная функция скорости — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN noncontinuous velocity functionabruptly changing velocity … Справочник технического переводчика

РАЗРЫВНАЯ ВАРИАЦИОННАЯ ЗАДАЧА — задача вариационного исчисления, в к рой экстремум функционала достигается на ломаной экстремали. Л о м ан а я э к с т р е м а л ь кусочно гладкое решение Эйлера уравнения, удовлетворяющее в угловых точках нек рым дополнительным необходимым… … Математическая энциклопедия

ВЫПУКЛАЯ ФУНКЦИЯ — действительного переменного функция , определенная на нек ром интервале, для любых двух точек х 1 и x2 к рого выполняется условие Геометрически это означает, что середина любой хорды графика функции f лежит либо над графиком, либо на нем. Если… … Математическая энциклопедия

разрыва точка — значение аргумента, при котором нарушается непрерывность функции. См. Непрерывная функция, Разрывная функция. * * * РАЗРЫВА ТОЧКА РАЗРЫВА ТОЧКА, значение аргумента, при котором нарушается непрерывность функции. См. Непрерывная функция (см.… … Энциклопедический словарь

Бэра классификация — (математика) классификация разрывных функций (См. Разрывные функции). К 1 му классу относится всякая разрывная функция, которая может быть представлена как предел сходящейся в каждой точке последовательности непрерывных функций (функций… … Большая советская энциклопедия

Математическая формула — Эта статья об обозначениях элементарной математики; Для более общего контекста см.: Математические обозначения. Математическая формула (от лат. formula уменьшительное от forma образ, вид) принятая в математике (а также… … Википедия

Источник

Непрерывность функций и точки разрыва с примерами решения

Содержание:

Непрерывность функций и точки разрыва

Непрерывность функции

Определение: Функция

  • — она определена в этой точке и ее некоторой -окрестности;
  • — существуют конечные лево- и правосторонние пределы от функции в этой точке и они равны между собой, т.е.

— предел функции в точке равен значению функции в исследуемой точке, т.е.

Пример:

Найти область непрерывности функции

Решение:

Данная функция непрерывна так как в каждой точке указанного интервала функция определена, в каждой точке существуют конечные и равные лево- и правосторонние пределы, а предел функции в каждой точке равен значению функции в этой точке.

Замечание: Всякая элементарная функция непрерывна в области своего определения.

Точки разрыва

Определение: Точки, в которых не выполняется хотя бы одно из условий непрерывности функции, называются точками разрыва. Различают точки разрыва первого и второго родов.

Определение: Точкой разрыва I рода называется точка, в которой нарушается условие равенства лево- и правостороннего пределов, т.е.

Пример:

Доказать, что функция в точке имеет разрыв первого рода.

Решение:

Нарисуем график функции в окрестности нуля (Рис. 64): Рис. 64. График функции Область определения функции: т.е. точка является точкой подозрительной на разрыв. Вычислим лево- и правосторонние пределы в этой точке: Следовательно, в изучаемой точке данная функция терпит разрыв первого рода.

Замечание: По поводу точки разрыва I рода иначе говорят, что в этой точке функция испытывает конечный скачок (на Рис. 64 скачок равен 1).

Определение: Точка, подозрительная на разрыв, называется точкой устранимого разрыва, если в этой точке левосторонний предел равен правостороннему.

Пример:

Доказать, что функция имеет в точке устранимый разрыв.

Решение:

В точке функция имеет неопределенность поэтому эта точка является точкой, подозрительной на разрыв. Вычислив в этой точке лево- и правосторонний пределы убеждаемся, что данная точка является точкой устранимого разрыва.

Определение: Все остальные точки разрыва называются точками разрыва II рода.

Замечание: Для точек разрыва второго рода характерен тот факт, что хотя бы

один из односторонних пределов равен т.е. в такой точке функция терпит бесконечный разрыв.

Пример:

Исследовать на непрерывность функцию

Решение:

Найдем область определения этой функции: т.е. точка

является точкой подозрительной на разрыв. Вычислим лево- и правосторонние пределы в этой точке: Так как левосторонний предел конечен, а правосторонний предел бесконечен, то в изучаемой точке данная функция терпит разрыв II рода.

Пример:

Исследовать на непрерывность функцию

Решение:

Найдем область определения этой функции: т.е. точка является точкой подозрительной на разрыв. Вычислим лево- и правосторонние пределы в этой точке: Так как левосторонний и правосторонний пределы бесконечены, то в изучаемой точке данная функция терпит разрыв II рода.

Операции над непрерывными функциями

Теорема: Сумма (разность) непрерывных функций есть непрерывная функция.

Доказательство: Докажем приведенную теорему для суммы двух функций которые определены в некоторой -окрестности точки в которой лево- и правосторонние пределы равны между собой. Так как функции непрерывны в некоторой -окрестности точки то выполняются равенства: В силу того, что существуют конечные пределы обеих функций, то по теореме о пределе суммы двух функций имеем, что Аналогично теорема доказывается для суммы (разности) любого конечного числа непрерывных функций. Нижеприведенные теоремы доказываются так же, как и теорема.

Теорема: Произведение непрерывных функций есть непрерывная функция.

Теорема: Частное двух непрерывных функций при условии, что во всех точках общей области определения функция , есть непрерывная функция.

Теорема: Сложная функция от непрерывных функций есть непрерывная функция.

Схема исследования функции на непрерывность

Исследование функции на непрерывность проводят по следующей схеме:

  • находят область определения функции; точки, в которых функция не определена, являются точками подозрительными на разрыв: если функция задана словесным образом, т.е. описывается разными формулами на разных интервалах, то точками подозрительными на разрыв являются точки, определяющие границы интервалов;
  • исследуют подозрительные на разрыв точки, для чего вычисляют лево- и правосторонние пределы; классифицируют точки разрыва;
  • при наличии точек разрыва строят график функции в малой -окрестности точки .

Пример:

Исследовать на непрерывность функцию

Решение:

Согласно схеме исследования функции на непрерывность имеем:

  • точка является точкой подозрительной на разрыв.
  • вычислим левосторонний и правосторонний пределы; так как пределы бесконечные, то точка является точкой разрыва второго рода;
  • построим график функции в небольшой окрестности точки разрыва (Рис. 65).

Рис. 65. Поведение графика функции в малой окрестности точки разрыва второго рода

Из рисунка видно, что график функции —неограниченно приближается к вертикальной прямой нигде не пересекая эту прямую.

Свойства непрерывных функций на отрезке (a; b)

Свойства непрерывных функций на отрезке .

Определение: Замкнутый интервал будем называть сегментом.

Приведем без доказательства свойства непрерывных функций на сегменте .

Теорема: Если функция непрерывна на сегменте , то она достигает своего наименьшего () и наибольшего () значения либо во внутренних точках сегмента, либо на его концах.

Пример:

Привести примеры графиков функций, удовлетворяющих условиям теорем(см. Рис. 66).

Рис. 66. Графики функций, удовлетворяющих условиям теоремы.

Решение:

На графике а) функция достигает своего наименьшего и наибольшего значений на концах сегмента На графике б) функция достигает своего наименьшего и наибольшего значения во внутренних точках сегмента На графике в) функция достигает своего наименьшего значения на левом конце сегмента а наибольшего значения во внутренней точке сегмента

Тб. Если функция непрерывна на сегменте и достигает своего наименьшего () и наибольшего () значений, то для любого вещественного числа С, удовлетворяющего неравенству , найдется хотя бы одна точка такая, что .

Пример:

Изобразить графики функций, удовлетворяющих условиям Тб (см. Рис. 67).

Рис. 67. Графики функций, удовлетворяющих условиям Тб.

Теорема: Если функция непрерывна на сегменте и на его концах принимает значения разных знаков, то найдется хотя бы одна точка такая, что.

Пример:

Изобразить графики функций, удовлетворяющих условиям теоремы(см. Рис. 68).

Рис. 68. Графики функций, удовлетворяющих условиям теоремы.

На графике а) существует единственная точка, в которой выполняются условия теоремы. На графиках б) и в) таких точек две и четыре, соответственно. Однако в случаях б) и в) для удовлетворения условий теоремы надо разбивать сегмент на отдельные отрезки.

Рекомендую подробно изучить предметы:
  1. Математика
  2. Алгебра
  3. Линейная алгебра
  4. Векторная алгебра
  5. Высшая математика
  6. Дискретная математика
  7. Математический анализ
  8. Математическая логика
Ещё лекции с примерами решения и объяснением:
  • Точки разрыва и их классификация
  • Дифференциальное исчисление
  • Исследование функций с помощью производных
  • Формула Тейлора и ее применение
  • Векторное и смешанное произведения векторов
  • Преобразования декартовой системы координат
  • Бесконечно малые и бесконечно большие функции
  • Замечательные пределы

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Источник

Оцените статью