Что значит равновесная система

Что значит равновесная система

Термодинамически равновесное состояние тела или системы это такое состояние теплового и механического равновесия элементов тела или системы, которое без внешнего воздействия может сохраняться сколь угодно долго.

Равновесная система это система тел, находящихся в термодинамическом равновесии, в противном случае она будет называться неравновесной системой.

Так, без учета гравитационных сил, равновесное состояние тела или системы есть такое их состояние, при котором по всему их объему давления и температуры имеют одинаковые значения. Равенство только давления во всех точках обусловливает механическое равновесие, равенство температур — термическое равновесие.

При неравновесном состоянии тела (системы) в разных его частях могут быть различны и температуры и давления. Однако в неравновесной системе могут быть точки, в которых некоторые термические параметры одинаковы. Геометрическое место точек в пространсве, занимаемом системой (телом), с одинаковыми температурами представляет собой изотермическую поверхность, а с одинаковым давлением — изобарическую поверхность. Такие поверхности называются изопотенциальными. Изопотенциальные поверхности не могут пересекаться. Изопотенциальные поверхности могут быть и при равновесном состоянии тела. Например, в высоком цилиндре с жидкостью на различных уровнях от его дна будут различные изобарные поверхности, обусловленные дейсвием гравитационного поля земли. Поэтому равенство параметров в равновесной системе делается с оговоркой — без учета гравитационных сил.

Все термодинамические параметры гомогенной сисемы (однородной — с одинаковыми физическими свойствами), находящейся в равновесном состоянии, имеют определенную функциональную связь. При отсутствии действия внешних полей, термодинамически равновесное состояние любого однородного реального тела определяется всего лишь двумя независимыми параметрами. Для неоднородных систем могут два параметра взаимно определять друг друга (например, давление и температура влажного насыщенного пара), в этом случае необходим третий параметр.

Читайте также:  Что значит пухленькая девушка

В качестве независимых параметров могут быть выбраны: давление и температура, давление и удельный объём, или любая пара независимых свойств (температура и энтропия, давление и энтальпия, и т.п.). Например, связь между параметрами p, v, T может быть выражена термическими уравнениями состояния системы:

— в неявной форме

— в явной форме

В системе координат P,v,T эти уравнения описывают поверхность, называемую термодинамической. Пример термодинамической поверхности приведен на рис. 2.8.

Вид функциональной зависимости между параметрами различен для различных веществ и может быть получен либо из опыта, либо на базе микрофизических теорий. Методами самой термодинамики эта связь определена быть не может.

Источник

Равновесные и неравновесные состояния

Классификация и характеристики термодинамических систем

Под термодинамической системой подразумевается макроскопическое тело, заключенное в некотором ограниченном пространстве и способное обмениваться с внешней средой и между внутренними частями веществом и энергией.

Термодинамические системы по характеру обмена с окружающей средой подразделяются на изолированные, закрытые и открытые.

Изолированными называют системы, которые не обмениваются с внешней средой ни массой, ни энергией. Таких систем вприроде не существует, поэтому под изолированными подразумевают системы, обменом которых с окружающей средой веществом и энергией можно пренебречь в рамках данной задачи.

Закрытыми называют системы, обменивающиеся внешней средой энергией, но не массой.

Открытые системы обмениваются с внешней средой и энергией и массой.

Классическая термодинамика занимается описанием изолированных и закрытых систем. Теория открытых систем (неравновесная термодинамика) начала разрабатываться с 30-х годов прошлого века.

Параметры термодинамических систем

Для того чтобы дать термодинамическое описание системы используются параметры системы. Параметры системы – это физические величины, которые служат для характеристики состояния системы. Параметры делятся на категории. Одни из них являются экстенсивными, другие интенсивными. Экстенсивные параметры характеризуют систему как целое, например, масса и объем. Далее мы встретимся другими экстенсивными характеристиками. Основное свойство экстенсивных параметров — их аддитивность. Например, масса системы равна сумме масс ее отдельных частей. Интенсивные параметры носят силовой характер (давление, температура, концентрация, внутренняя энергия, энтропия и др.) и могут приобретать разные значения в различных точках системы. Любой вид затрачиваемой на совершение работы энергии выражается через произведение интенсивного (силового) параметра на экстенсивный.

Равновесные и неравновесные состояния

Равновесным является такое состояние изолированной темы, в которое она приходит по истечении достаточно большого промежутка времени. Это время, называемое временем релаксации, зависит от природы тела, от характера взаимодействия частиц в системе, а также от исходного неравновесного состояния. После истечения времени релаксации параметры изолированной системы принимают постоянные значения и в дальнейшем не изменяются. Интенсивные параметры принимают одинаковые значения во всех частях системы. Поэтому равновесное состояние полностью описывается определенным набором параметров системы, экстенсивных и интенсивных. Связь между параметрами состояния называется уравнением состояния. Например, уравнение равновесного состояния идеального газа связывает между собой температуру, давление (интенсивные характеристики), объем и массу (экстенсивные характеристики).

Неравновесным называется такое состояние изолированной системы, при котором интенсивные параметры системы имеют различные значения в ее различных частях, вследствие чего в ней протекают процессы, направленные на выравнивание значений этих параметров во всех точках системы и на установление равновесного состояния.

Стационарное состояние – состояние системы, при котором значения параметров системы изменяются с постоянной скоростью. Отличие стационарного состояния от равновесного заключается в том, что в этом состоянии макроскопические процессы не прекращаются, как в случае равновесного состояния, а идут с постоянной скоростью. Входной поток энергии и вещества равен выходному потоку.

Дата добавления: 2016-02-02 ; просмотров: 3796 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Понятие термодинамического равновесия. Равновесные и неравновесные системы.

Термодинамическое равновесие – это полностью стабильное состояние, в котором система может находиться в течение неограниченного периода времени. При выведении изолированной системы из равновесия, она стремится возвратиться к этому состоянию самопроизвольно (термос с горячей водой и кусочек льда).

В состоянии термодинамического равновесия в системе не только все параметры постоянны во времени, но и нет никаких стационарных потоков за счет действия каких-либо внешних источников.

Для открытых и закрытых систем характерное стационарное состояние (параметры системы с течением времени не изменяются).

Равновесная система – параметры в разных частях системы одинаковы. Движущие силы отсутствуют. Если такая система изолирована, то она может находиться в состоянии равновесия неограниченно долго.

Неравновесная система– их параметры различны в разных точках объема, что приводит к наличию постоянных градиентов и сил, и создаваемых ими потоков вещества и энергии за счет поступления энергии из внешней среды. Если такая система изолирована, то она необратимо эволюционирует к состоянию ТД равновесия.

7. Первый закон термодинамики. История открытия. Формулировка, физический и биологический смысл.

Открытие первого закона термодинамики исторически связано с установлением эквивалентности теплоты и механической работы. Это открытие связано с имена Р. Майера и Д. Джоуля. Основная работа Майера, в которой он подробно и систематически развил свои идеи, была опубликована в 1845 г. и называлась «Органическое движение в его связи с обменом веществ». Майер сразу же сформулировал первое начало термодинамики как принцип, которому подчиняются любые формы движения в природе. Он указывал, что источником механических и тепловых эффектов в живом организме является не жизненная сила, как утверждали виталисты, а те химические процессы, которые протекают в нем в результате поглощения кислорода и пищи.

Джоуль пришел к установлению эквивалентности тепла и механической работы индуктивным путем, т.е. непосредственно экспериментальным измерением превращения механического движения в теплоту.

Первый закон термодинамики формулируется следующим образом: «Общая энергия в изолированной системе – величина постоянная и не изменяется во времени, а лишь переходит из одной формы в другую.

Теплота σQ, поглощенная системой из внешней среды идет на увеличение внутренней энергии dU системы и совершение работы σА против внешних сил.

Если теплота передается в систему, то ΔQ > 0.

Если теплота передается системой, то ΔQ 2/3 ,где :

а – количество клеток,

b – площадь поверхности,

М – масса тела животного.

(Удельная теплопродукция уменьшается с увеличением массы животного).

Источник

Химическое равновесие. Принцип Ле Шателье

Материалы портала onx.distant.ru

Понятие химического равновесия

Признаки химического равновесия

Принцип Ле Шателье

Влияние температуры на химическое равновесие

Влияние давления на химическое равновесие

Влияние концентрации на химическое равновесие

Константа химического равновесия

Примеры решения задач

Задачи для самостоятельного решения

Понятие химического равновесия

Равновесным считается состояние системы, которое остается неизменным, причем это состояние не обусловлено действием каких-либо внешних сил. Состояние системы реагирующих веществ, при котором скорость прямой реакции становится равной скорости обратной реакции, называется химическим равновесием. Такое равновесие называется еще подвижным или динамическим равновесием.

Признаки химического равновесия

  1. Состояние системы остается неизменным во времени при сохранении внешних условий.
  2. Равновесие является динамическим, то есть обусловлено протеканием прямой и обратной реакции с одинаковыми скоростями.
  3. Любое внешнее воздействие вызывает изменение в равновесии системы; если внешнее воздействие снимается, то система снова возвращается в исходное состояние.
  4. К состоянию равновесия можно подойти с двух сторон – как со стороны исходных веществ, так и со стороны продуктов реакции.
  5. В состоянии равновесия энергия Гиббса достигает своего минимального значения.

Принцип Ле Шателье

Влияние изменения внешних условий на положение равновесия определяется принципом Ле Шателье (принципом подвижного равновесия):

Если на систему, находящуюся в состоянии равновесия, производить какое–либо внешнее воздействие, то в системе усилится то из направлений процесса, которое ослабляет эффект этого воздействия, и положение равновесия сместится в том же направлении.

Принцип Ле Шателье применим не только к химическим процессам, но и к физическим, таким как кипение, кристаллизация, растворение и т. д.

Рассмотрим влияние различных факторов на химическое равновесие на примере реакции окисления NO:

Влияние температуры на химическое равновесие

При повышении температуры равновесие сдвигается в сторону эндотермической реакции, при понижении температуры – в сторону экзотермической реакции.

Степень смещения равновесия определяется абсолютной величиной теплового эффекта: чем больше по абсолютной величине энтальпия реакции ΔH, тем значительнее влияние температуры на состояние равновесия.

В рассматриваемой реакции синтеза оксида азота (IV) повышение температуры сместит равновесие в сторону исходных веществ.

Влияние давления на химическое равновесие

Сжатие смещает равновесие в направлении процесса, который сопровождается уменьшением объема газообразных веществ, а понижение давления сдвигает равновесие в противоположную сторону.

В рассматриваемом примере в левой части уравнения находится три объема, а в правой – два. Так как увеличение давления благоприятствует процессу, протекающему с уменьшением объема, то при повышении давления равновесие сместится вправо, т.е. в сторону продукта реакции – NO2. Уменьшение давления сместит равновесие в обратную сторону. Следует обратить внимание на то, что, если в уравнении обратимой реакции число молекул газообразных веществ в правой и левой частях равны, то изменение давления не оказывает влияния на положение равновесия.

Влияние концентрации на химическое равновесие

Для рассматриваемой реакции введение в равновесную систему дополнительных количеств NO или O2 вызывает смещение равновесия в том направлении, при котором концентрация этих веществ уменьшается, следовательно, происходит сдвиг равновесия в сторону образования NO2. Увеличение концентрации NO2 смещает равновесие в сторону исходных веществ.

Катализатор одинаково ускоряет как прямую, так и обратную реакции и поэтому не влияет на смещение химического равновесия.

При введении в равновесную систему (при Р = const) инертного газа концентрации реагентов (парциальные давления) уменьшаются. Поскольку рассматриваемый процесс окисления NO идет с уменьшением объема, то при добавлении инертного газа равновесие сместится в сторону исходных веществ.

Константа химического равновесия

Для химической реакции:

константа химической реакции Кс есть отношение:

В этом уравнении в квадратных скобках – концентрации реагирующих веществ, которые устанавливаются при химическом равновесии, т.е. равновесные концентрации веществ.

Константа химического равновесия связана с изменением энергии Гиббса уравнением:

ΔGT о = – RTlnK (2)

Примеры решения задач

Задача 1. При некоторой температуре равновесные концентрации в системе 2CO (г) + O2 (г)→2CO2 (г) составляли: [CO] = 0,2 моль/л, [O2] = 0,32 моль/л, [CO2] = 0,16 моль/л. Определите константу равновесия при этой температуре и исходные концентрации CO и O2, если исходная смесь не содержала СО2.

Решение.

Вещество

CO O2 CO2
Сисходн, моль/л 0,52 0,48 0
Спрореагир,моль/л 0,32 0,16 0,16
Сравн, моль/л 0,2 0,32 0,16

Во второй строке под Спрореагир понимается концентрация прореагировавших исходных веществ и концентрация образующегося CO2, причем, Сисходн= Спрореагир + Сравн.

Задача 2. Используя справочные данные, рассчитайте константу равновесия процесса

Решение.

ΔG298 о = 2·(- 16,71) кДж = -33,42·10 3 Дж.

lnK = 33,42·10 3 /(8,314× 298) = 13,489. K = 7,21× 10 5 .

Задача 3. Определите равновесную концентрацию HI в системе

если при некоторой температуре константа равновесия равна 4, а исходные концентрации H2 , I2 и HI равны, соответственно, 1, 2 и 0 моль/л.

Решение. Пусть к некоторому моменту времени прореагировало x моль/л H2.

Вещество H2 I2 HI
сисходн., моль/л 1 2 0
спрореагир., моль/л x x 2x
cравн., моль/л 1-x 2-x 2x

Тогда, К = (2х) 2 /((1-х)(2-х))

Решая это уравнение, получаем x = 0,67.

Значит, равновесная концентрация HI равна 2× 0,67 = 1,34 моль/л.

Задача 4. Используя справочные данные, определите температуру, при которой константа равновесия процесса: H2(г) + HCOH(г) →CH3OH(г) становится равной 1. Принять, что ΔН о Т » ΔН о 298, а ΔS о T » ΔS о 298.

Решение.

Если К = 1, то ΔG о T = — RTlnK = 0;

ΔН о 298 = -202 – (- 115,9) = -86,1 кДж = — 86,1× 10 3 Дж;

ΔS о 298 = 239,7 – 218,7 – 130,52 = -109,52 Дж/К;

0 = — 86100 — Т·(-109,52)

Задача 5. Для реакции SO2(Г) + Cl2(Г) →SO2Cl2(Г) при некоторой температуре константа равновесия равна 4. Определите равновесную концентрацию SO2Cl2, если исходные концентрации SO2, Cl2 и SO2Cl2 равны 2, 2 и 1 моль/л соответственно.

Решение. Пусть к некоторому моменту времени прореагировало x моль/л SO2.

Вещество SO2 Cl2 SO2Cl2
cисходн., моль/л 2 2 1
cпрореагир., моль/л x x х
cравн., моль/л 2-x 2-x x + 1

Решая это уравнение, находим: x1 = 3 и x2 = 1,25. Но x1 = 3 не удовлетворяет условию задачи.

Следовательно, [SO2Cl2] = 1,25 + 1 = 2,25 моль/л.

Задачи для самостоятельного решения

1. В какой из приведенных реакций повышение давления сместит равновесие вправо? Ответ обоснуйте.

Так как увеличение давления благоприятствует процессу, протекающему с уменьшением количества
газообразных веществ, то равновесие сместится вправо в реакции 3.

2. При некоторой температуре равновесные концентрации в системе:

составляли: [HBr] = 0,3 моль/л, [H2] = 0,6 моль/л, [Br2] = 0,6 моль/л. Определите константу равновесия и исходную концентрацию HBr.

К = 4; исходная концентрация HBr составляет 1,5 моль/л.

3. Для реакции H2(г) + S(г) →H2S(г) при некоторой температуре константа равновесия равна 2. Определите равновесные концентрации H2 и S, если исходные концентрации H2, S и H2S равны, соответственно, 2, 3 и 0 моль/л.

[H2] = 0,5 моль/л; [S] = 1,5 моль/л.

4. Используя справочные данные, вычислите температуру, при которой константа равновесия процесса

становится равной 1. Примите, что ΔН о Т≈ΔН о 298, а ΔS о T≈ΔS о 298

5. Используя справочные данные, рассчитайте константу равновесия процесса:

6. Для реакции 2С3Н8(г) → н-С5Н12(г)+СН4(г) при температуре 1000 К константа равновесия равна 4. Определите равновесную концентрацию н-пентана, если исходная концентрация пропана равна 5 моль/л.

7. При температуре 500 К константа равновесия процесса:

равна 3,4·10 -5 . Вычислите Δ G о 500.

8. При температуре 800 К константа равновесия процесса н-С6Н14(г)+ 2С3Н6(г)2(г) равна 8,71. Определите ΔG о f,8003Н6(г)), если ΔG о f,800(н-С6Н14(г)) = 305,77 кДж/моль.

9. Для реакции СО(г) + Cl2(г) →СO2Cl2(г) при некоторой температуре равновесная концентрация СO2Cl2(г) равна 1,2 моль/л. Определите константу равновесия данного процесса, если исходные концентрации СО(г) и Cl2(г) равны соответственно 2,0 и 1,8 моль/л.

10. При некоторой температуре равновесные концентрации в системе 2SО2(г) + О2(г) →2SO3(г) составляли: [SО2 ]=0,10 моль/л, [О2]=0,16 моль/л, [SО3]=0,08 моль/л. Вычислите константу равновесия и исходные концентрации SО2 и О2.

К=4,0; исходная концентрация SО2 составляет 0,18 моль/л;
исходная концентрация О2 составляет 0,20 моль/л.

Источник

Оцените статью