Что значит равенство для 3 класса

Числовые равенства, свойства числовых равенств

После получения общих сведений о равенствах в математике переходим к более узким темам. Материал этой статьи даст представление о свойствах числовых равенств.

Что такое числовое равенство

Первый раз мы сталкиваемся с числовыми равенствами еще в начальной школе, когда происходит знакомство с числами и понятием «столько же». Т.е. самые примитивные числовые равенства это: 2 = 2 , 5 = 5 и т.д. И на том уровне изучения мы называли их просто равенствами, без уточнения «числовые», и закладывали в них количественный или порядковый смысл (который несут натуральные числа). Например, равенство 2 = 2 будет соответствовать изображению, на котором – два цветка и на каждом сидит по две шмеля. Или, к примеру, две очереди, где вторыми по порядку стоят Вася и Ваня.

По мере появления знаний об арифметических действиях числовые равенства становятся сложнее: 5 + 7 = 12 ; 6 — 1 = 5 ; 2 · 1 = 2 ; 21 : 7 = 3 и т.п. Затем начинают встречаться равенства, в записи которых участвуют числовые выражения разного рода. Например, ( 2 + 2 ) + 5 = 2 + ( 5 + 2 ) ; 4 · ( 4 − ( 1 + 2 ) ) + 12 : 4 − 1 = 4 · 1 + 3 − 1 и т.п. Дальше мы знакомимся с прочими видами чисел, и числовые равенства приобретают все более и более интересный и разнообразный вид.

Числовое равенство – это равенство, обе части которого состоят из чисел и/или числовых выражений.

Читайте также:  Brother in crime что значит

Свойства числовых равенств

Сложно переоценить значимость свойств числовых равенств в математике: они являются опорой многому, определяют принцип работы с числовыми равенствами, методы решений, правила работы с формулами и многое другое.Очевидно, что существует необходимость детального изучения свойств числовых равенств.

Свойства числовых равенств абсолютно согласованы с тем, как определяются действия с числами, а также с определением равных чисел через разность: число a равно числу b только в тех случаях, когда разность a − b есть нуль. Далее в описании каждого свойства мы проследим эту связь.

Основные свойства числовых равенств

Изучать свойства числовых равенств начнем с трех базовых свойств, которые присущи всем равенствам. Перечислим основные свойства числовых равенств:

  • свойство рефлексивности: a = a ;
  • свойство симметричности: если a = b , то b = a ;
  • свойство транзитивности: если a = b и b = c , то a = c ,где a , b и c – произвольные числа.

Определение 2

Свойство рефлексивности обозначает факт равенства числа самому себе: к примеру, 6 = 6 , − 3 = − 3 , 4 3 7 = 4 3 7 и т.п.

Нетрудно продемонстрировать справедливость равенства a − a = 0 для любого числа a : разность a − a можно записать как сумму a + ( − a ) , а свойство сложения чисел дает нам возможность утверждать, что любому числу a соответствует единственное противоположное число − a , и сумма их есть нуль.

Согласно свойству симметричности числовых равенств: если число a равно числу b ,
то число b равно числу a . К примеру, 4 3 = 64 , тогда 64 = 4 3 .

Обосновать данное свойство можно через разность чисел. Условию a = b соответствует равенство a − b = 0 . Докажем, что b − a = 0 .

Запишем разность b − a в виде − ( a − b ) , опираясь на правило раскрытия скобок, перед которыми стоит знак минус. Новая запись выражения равна — 0 , а число, противоположное нулю, это нуль. Таким образом, b − a = 0 , следовательно: b = a .

Свойство транзитивности числовых равенств гласит, что два числа равны друг другу в случае их одновременного равенства третьему числу. К примеру, если 81 = 9 и 9 = 3 2 , то 81 = 3 2 .

Свойству транзитивности также отвечает определение равных чисел через разность и свойства действий с числами. Равенствам a = b и b = c соответствуют равенства a − b = 0 и b − c = 0 .

Докажем справедливость равенства a − c = 0 , из чего последует равенство чисел a и c . Посколькусложение числа с нулем не меняет само число, то a − c запишем в виде a + 0 − c . Вместо нуля подставим сумму противоположных чисел − b и b , тогда крайнее выражение станет таким: a + ( − b + b ) − c . Выполним группировку слагаемых: ( a − b ) + ( b − c ) . Разности в скобках равны нулю, тогда и сумма ( a − b ) + ( b − c ) есть нуль. Это доказывает, что, когда a − b = 0 и b − c = 0 , верно равенство a − c = 0 , откуда a = c .

Прочие важные свойства числовых равенств

Основные свойства числовых равенств, рассмотренные выше, являются базисом для ряда дополнительных свойств, довольно ценных в разрезе практики. Перечислим их:

Прибавив к (или убавив от) обеим частям числового равенства, являющегося верным, одно и то же число, получим верное числовое равенство. Запишем буквенно: если a = b , где a и b – некоторые числа, то a + c = b + c при любом c .

В качестве обоснования запишем разность ( a + c ) − ( b + c ) .
Это выражение легко преобразуется в вид ( a − b ) + ( c − c ) .
Из a = b по условию следует, что a − b = 0 и c − c = 0 , тогда ( a − b ) + ( c − c ) = 0 + 0 = 0 . Это доказывает, что ( a + c ) − ( b + c ) = 0 , следовательно, a + c = b + c ;

Если обе части верного числового равенства перемножить с любым числом или разделить на число, не равное нулю, тогда получим верное числовое равенство.
Запишем буквенно: когда a = b , то a · c = b · c при любом числе c . Если c ≠ 0 , тогда и a : c = b : c .

Равенство верно: a · c − b · c = ( a − b ) · c = 0 · c = 0 , и из него следует равенство произведений a · c и b · c . А деление на отличное от нуля число c возможно записать как умножение на обратное число 1 c ;

При a и b , отличных от нуля и равных между собой, обратные им числа также равны.
Запишем: когда a ≠ 0 , b ≠ 0 и a = b , то 1 a = 1 b . Крайнее равенство нетрудно доказать: с этой целью разделим обе части равенства a = b на число, равное произведению a · b и не равное нулю.

Укажем еще на пару свойств, которые позволяют осуществлять сложение и умножение соответствующих частей верных числовых равенств:

При почленном сложении верных числовых равенств получается верное равенство. Запись этого свойства такова: если a = b и c = d , то a + c = b + d для любых чисел a , b , c и d .

Обосновать это полезное свойство возможно, опираясь на указанные ранее свойства. Мы знаем, что к обеим частям верного равенства возможно прибавить любое число.
К равенству a = b прибавим число c , а к равенству c = d — число b , итогом станут верные числовые равенства: a + c = b + c и c + b = d + b . Крайнее запишем в виде: b + c = b + d . Из равенств a + c = b + c и b + c = b + d согласно свойству транзитивности следует равенство a + c = b + d . Что и нужно было доказать.

Необходимо уточнить, что почленно можно сложить не только два верных числовых равенства, но и три, и более;

Наконец, опишем такое свойство: почленное перемножение двух верных числовых равенств дает верное равенство. Запишем при помощи букв: если a = b и c = d , то a · c = b · d .

Доказательство этого свойства подобно доказательству предыдущего. Умножим обе части равенства на любое число, умножим a = b на c , а c = d на b , получим верные числовые равенства a · c = b · c и c · b = d · b . Крайнее запишем как b · c = b · d . Свойство транзитивности дает возможность из равенства a · c = b · c и b · c = b · d вывести равенство a · c = b · d , которое нам необходимо было доказать.

И вновь уточним, что данное свойство применимо для двух, трех и более числовых равенств.
Так, можно записать: если a = b , то a n = b n для любых чисел a и b , и любого натурального числа n .

Завершим данную статью, собрав для наглядности все рассмотренные свойства:

Если a = b , то b = a .

Если a = b и b = c , то a = c .

Если a = b , то a + c = b + c .

Если a = b , то a · c = b · c .

Если a = b и с ≠ 0 , то a : c = b : c .

Если a = b , a = b , a ≠ 0 и b ≠ 0 , то 1 a = 1 b .

Источник

Понятие равенства, знак равенства, связанные определения

Материал статьи позволит ознакомиться с математической трактовкой понятия равенства. Порассуждаем на тему сути равенства; рассмотрим его виды и способы его записи; запишем свойства равенства и проиллюстрируем теорию примерами.

Что такое равенство

Само понятие равенства тесно переплетено с понятием сравнения, когда мы сопоставляем свойства и признаки, чтобы выявить схожие черты. Процесс сравнения требует наличия двух объектов, которые и сравниваются между собой. Данные рассуждения наводят на мысль, что понятие равенства не может иметь место, когда нет хотя бы двух объектов, чтобы было что сравнивать. При этом, конечно, может быть взято большее количество объектов: три и более, однако, в конечном, счете, мы так или иначе придем к сравнению пар, собранных из заданных объектов.

Смысл понятия «равенство» в обобщенном толковании отлично определяется словом «одинаковые». О двух одинаковых объектах можно говорить – «равные». Например, квадраты и . А вот объекты, которые хоть по какому-то признаку отличаются друг от другу, назовем неравными.

Говоря о равенстве, мы можем иметь в виду как объекты в целом, так и их отдельные свойства или признаки. Объекты являются равными в целом, когда одинаковы по всем характеристикам. Например, когда мы привели в пример равенство квадратов, имели в виду их равенство по всем присущим им свойствам: форме, размеру, цвету. Также объекты могут и не быть равными в целом, но обладать одинаковыми отдельными признаками. Например: и . Указанные объекты равны по форме (оба – круги), но различны (неравны) по цвету и размеру.

Таким образом, необходимо заранее понимать, равенство какого рода мы имеем в виду.

Запись равенств, знак равно

Чтобы произвести запись равенства, используют знак равно (или знак равенства), обозначаемый как = .Такое обозначение является общепринятым.

Составляя равенство, равные объекты размещают рядом, записывая между ними знак равно. К примеру, равенство чисел 5 и 5 запишем как 5 = 5 . Или, допустим, нам необходимо записать равенство периметра треугольника А В С 6 метрам: P А В С = 6 м.

Равенство – запись, в которой использован знак равно, разделяющий два математических объекта (или числа, или выражения и т.п.).

Когда возникает необходимость письменно обозначить неравенство объектов, используют знак не равно, обозначаемый как ≠ , т.е. по сути зачеркнутый знак равно.

Верные и неверные равенства

Составленные равенства могут соответствовать сути понятия равенства, а могут и противоречить ему. По этому признаку все равенства классифицируют на верные равенства и неверные равенства. Приведем примеры.

Составим равенство 7 = 7 . Числа 7 и 7 , конечно, являются равными, а потому 7 = 7 – верное равенство. Равенство 7 = 2 , в свою очередь, является неверным, поскольку числа 7 и 2 не равны.

Свойства равенств

Запишем три основных свойства равенств:

  • свойство рефлексивности, гласящее, что объект равен самому себе;
  • свойство симметричности: если первый объект равен второму, то второй равен первому;
  • свойство транзитивности: когда первый объект равен второму, а второй – третьему, тогда первый равен третьему.

Буквенно сформулированные свойства запишем так:

Отметим особенную пользу второго и третьего свойств равенств – свойств симметричности и транзитивности – они дают возможность утверждать равенство трех и более объектов через их попарное равенство.

Двойные, тройные и т.д. равенства

Совместно со стандартной записью равенства, пример которой мы приводили выше, также часто составляются так называемые двойные равенства, тройные равенства и т.д. Подобные записи представляют собой как бы цепочку равенств. К примеру, запись 2 + 2 + 2 = 4 + 2 = 6 — двойное равенство, а | A B | = | B C | = | C D | = | D E | = | E F | — пример четвертного равенства.

При помощи таких цепочек равенств оптимально составлять равенство трех и более объектов. Такие записи по своему смыслу являются обозначением равенства любых двух объектов, составляющих исходную цепочку равенств.

Например, записанное выше двойное равенство 2 + 2 + 2 = 4 + 2 = 6 обозначает равенства: 2 + 2 + 2 = 4 + 2 , и 4 + 2 = 6 , и 2 + 2 + 2 = 6 , а в силу свойства симметричности равенств и 4 + 2 = 2 + 2 + 2 , и 6 = 4 + 2 , и 6 = 2 + 2 + 2 .

Составляя подобные цепочки, удобно записывать последовательность решения примеров и задач: такое решение становится наглядным и отражает все промежуточные этапы вычислений.

Источник

Равенства и неравенства. 3-й класс

Класс: 3

Презентация к уроку

Тип урока: открытие новых знаний.

Технология: технология развития критического мышления через чтение и письмо, игровая технология.

Цели: Расширить знания учащихся о равенствах и неравенствах, познакомить с понятием верных и неверных равенств и неравенств.

Дидактическая задача: Организовать совместную, самостоятельную деятельность учащихся по изучению нового материала.

Задачи урока:

  1. Предметные:
    • познакомить с признаками равенства и неравенства; расширить представления учащихся о равенствах и неравенствах;
    • познакомить с понятием верного и неверного равенства и неравенства;
    • развитие навыков нахождения значения выражения, содержащего переменную;
    • формирование вычислительных навыков.
  2. Метапредметные:
    1. Познавательные:
      • способствовать развитию внимания, памяти, мышления;
      • развитие умения извлекать информацию, ориентироваться в своей системе знаний и осознавать необходимость нового знания;
      • овладение приемами отбора и систематизации материала, уменими сопоставлять и сравнивать, преобразовывать информацию (в схему, таблицу).
    2. Регулятивные:
      • развитие зрительного восприятия;
      • продолжить работу над формированием действий самоконтроля и самооценки учащихся;
    3. Коммуникативные:
      • пронаблюдать над взаимодействием детей в парах, внести необходимые коррективы;
      • воспитывать взаимопомощь.
  3. Личностные:
    • повышение учебной мотивации учащихся путем использования на уроке интерактивной школьной доски Star Board;
    • совершенствование навыков работы со Star Board.

Оборудование:

  • Учебник «Математика» 3 класс, 2часть (Л.Г. Петерсон);
  • индивидуальный раздаточный лист;
  • карточки для работы в парах;
  • презентация к уроку, выведенная на панель Star Board;
  • компьютер, проектор, панель Star Board.

Ход урока

I. Организационный момент.

И так, друзья, внимание.
Ведь прозвенел звонок
Садитесь поудобнее,
Начнем скорей урок!

II. Устный счет.

– Сегодня мы отправимся с вами в гости. Прослушав стихотворение, вы сможете назвать имя хозяйки. (Чтение стихотворение ученицей)

В веках математика овеяна славой,
Светило всех земных светил.
Ее царицей величавой
Недаром Гаусс окрестил.
Мы славим разум человека,
Дела его волшебных рук,
Надежду нынешнего века,
Царицу всех земных наук.

– И так, нас ждет Математика. В её царстве много княжеств, но сегодня мы посетим одно из них (слайд 4)

– Название княжества вы узнаете, решив примеры и расставив ответы в порядке возрастания. (Высказывание)

7200 : 90 = 80 С 280 : 70 = 4 И
5400 : 9 = 600 Ы 3500 : 70 = 50 З
2700 : 300 = 9 В 4900 : 700 = 7 А
4800 : 80 = 60 А 1600 : 40 = 40 Ы
560 : 8 = 70 К 1800 : 600 = 3 Е
4200 : 6 = 700 В 350 : 70 = 5 Н

– Давайте вспомним, что такое высказывание? (Утверждение)

– Каким может быть высказывание? (Верным или неверным)

– Мы сегодня с вами будем работать с математическими высказываниями. Что к ним относится? (выражение, равенства, неравенства, уравнения)

III. Стадия 1. ВЫЗОВ. Подготовка к изучению нового.

(слайд 5 см. примечание)

– Княжна Высказывание предлагае вам первое испытание.

– Перед вами карточки. Найдите лишнюю карточку, покажите (а + 6 – 45 * 2).

– Почему она лишняя? (Выражение)

– Является ли выражение законченным утверждением? (Нет, не является, т.к. оно не доведено до логического завершения)

7 * 9 = 63 а + 8 = 27 100 : 4 + а = 90
а + 6 > 45 * 2 а + 6 – 45 * 2 95 4

– Разложите оставшиеся карточки на группы. (Равенства и неравенства)

7 * 9 = 63 а + 6 > 45 * 2
а + 8 = 27 95 4

– А что такое равенство и неравенство, можно ли их назвать высказыванием?

– Назовите верные равенства.

– Как по-другому назвать верные равенства? (истинные)

– О каких равенствах нельзя сказать, что они истинные? (с переменной)

– Математика постоянно учит нас доказывать истинность или ложность наших высказываний.

IV. Сообщение цели урока.

– И сегодня мы должны узнать, что такое равенство и неравенство и научиться определять их истинность и ложность.

– Перед вами высказывания. Прочитайте их внимательно. Если вы считаете, его верным, то поставьте в первом столбике «+», если нет – «–».

До чтения После чтения
Равенства – это два выражения, соединенных знаком «=»
Выражения могут быть числовыми и буквенными.
Если два выражения числовые, то равенство является высказыванием.
Числовые равенства могут быть истинными или ложными.
6 * 3 = 18 – верное числовое равенство
16 : 3 = 8 – неверное числовое равенство
Два выражения, соединенных знаком «>» или « b
8 + 12 + 20 а – b
8 + 12 > 20 а + b = с
20 = 8 + 12 а + b * с

– Сколько равенств подчеркнули? Проверим.

– Что помогло выполнить задание? (знаки «=», «>», « 20.05.2012

Источник

Оцените статью