Что значит растянуть или сжать график функции

График функции y=f(kx)

Растяжение и сжатие — один из видов геометрических преобразований, благодаря которому на основе графиков элементарных функций можно легко строить графики многих других функций.

График функции y=f(kx) (где k>1) может быть получен из графика функции y=f(x) сжатием к оси Oy в k раз.

При таком преобразовании каждая точка (x; y) графика функции y=f(x) переходит в точку (x/k; y) графика y=f(kx):

(то есть абсциссу (x) каждой точки начального графика уменьшаем в k раз, а ординату (y) оставляем без изменения. При этом точка, лежащая на оси Oy, остаётся на месте (так как 0:k=0).

1) График функции y=(2x)² можно получить из графика функции y=x ² с помощью сжатия к оси Oy в 2 раза.

На координатной плоскости строим график функции y=x² (можно отметить только его базовые точки). Затем координату x каждой точки делим на 2, а координату y оставляем без изменения. Таким образом, каждая точка нового графика становится ближе в 2 раза к оси Oy, чем точка начального графика (от оси Ox обе точки находятся на одинаковом расстоянии):

(-3; 9) → (-3/2; 9), и т. д.

Читайте также:  Достойный человек что это значит

График y=(2x)² из графика y=x²

2) График функции y=√(5x) можно получить, сжав график функции y= √ x к оси Oy в 5 раз:

(49; 7) → (49/5; 7), и т. д.

3) График функции y=|4х| может быть получен из графика функции y=|х| сжатием к оси Oy в 4 раза:

Преобразование графиков применяется при решении примеров из различных разделов алгебры.

Источник

Растяжение и сжатие графиков функций

Список функций, изученных в 7 и 8 классе

Растяжение и сжатие графика по оси OX

Сравним графики пар функций, которые в общем виде можно записать так:

$$ y_1 = f(x), y_2 = f(px) $$

где $p \gt 1$, произвольный положительный множитель.

$ y_2 = f(2x) = (2x)^2 = 4x^2 $

$y_2 = y_1 при x_2 = \frac<1> <2>x_1$

График сжимается в 2 раза по оси OX

$ y_2 = y_1 при x_2 = \frac<1> <2>x_1 $

График сжимается в 2 раза по оси OX

$y_2=y_1 при x_2 = \frac<1> <2>x_1$

График сжимается в 2 раза по оси OX

Теперь сравним пары функций с делением на p:

$$ y_1 = f(x), \quad y_2 = f \left( \frac

\right), \quad p \gt 1 $$

$ y_2 = f \left(\frac<2>\right) = \left(\frac<2>\right)^2 = \frac <4>$

$y_2 = y_1 при x_2 = 2x_1$

График растягивается в 2 раза по оси OX

$y_2 = f \left(\frac<2>\right) = \frac<4> = \frac<8>$

$ y_2 = y_1 при x_2 = 2x_1$

График растягивается в 2 раза по оси OX

$y_2=y_1 при x_2 = 2x_1$

График растягивается в 2 раза по оси OX

При сравнении графиков двух функций

$$ y_1 = f(x), \quad y_2 = f(px), \quad p \gt 1 $$

график второй функции сжимается в p раз по оси OX по сравнению с графиком первой функции.

При сравнении графиков двух функций

$$ y_1 = f(x), \quad y_2 = f \Biggl(\frac

\Biggr), \quad p \gt 1 $$

график второй функции растягивается в p раз по оси OX по сравнению с графиком первой функции.

Заметим, что данные утверждения справедливы не только для рассмотренных функций, но и для любых других (синусов, косинусов, логарифмов и т.п.)

Растяжение и сжатие графика по оси OY

Сравним графики пар функций, которые в общем виде можно записать так:

$$ y_1 = f(x), \quad y_2 = Af(x) $$

где $A \gt 1$, произвольный положительный множитель.

$y_2 = 2y_1 при x_2 = x_1$

График растягивается в 2 раза по оси OY

$ y_2 = 2y_1 при x_2 = x_1$

График растягивается в 2 раза по оси OY

$y_2 = 2f(x) = 2\sqrt$

$y_2 = 2y_1 при x_2 = x_1$

График растягивается в 2 раза по оси OY

Теперь сравним пары функций с делением на A:

$y_2 = \frac<1><2>y_1 при x_2 = x_1$

График сжимается в 2 раза по оси OY

$ y_2 = \frac<1><2>y_1 при x_2 = x_1$

График сжимается в 2 раза по оси OY

$y_2 = \frac<1><2>y_1 при x_2 = x_1$

График сжимается в 2 раза по оси OY

При сравнении графиков двух функций

$$ y_1 = f(x), \quad y_2 = Af(x), \quad A \gt 1 $$

график второй функции растягивается в A раз по оси OY по сравнению с графиком первой функции.

При сравнении графиков двух функций

график второй функции сжимается в A раз по оси OY по сравнению с графиком первой функции.

Заметим, что данные утверждения справедливы не только для рассмотренных функций, но и для любых других (синусов, косинусов, логарифмов и т.п.)

Примеры

Пример 1. Постройте в одной координатной плоскости графики функций:

По сравнению с графиком $y = \sqrt$:

  • график функции $y = \sqrt<3x>$ сжимается в 3 раза по оси OX(←)
  • график функции $y = \sqrt<\frac<3>>$ растягивается в 3 раза по оси OX(→)
  • график функции $y = 3\sqrt$ растягивается в 3 раза по оси OY(↑)

Пример 2*. Постройте в одной координатной плоскости графики функций:

$$ y = f(x), y = f(2x), y = f \Biggl(\frac<2>\Biggr), y = 2f(x) $$

Исходная функция $y = f(x) = x^2+3x+2$

$$ y = f(2x) = (2x)^2+3 \cdot (2x)+2 = 4x^2+6x+2 $$

$$ y = f\Biggl(\frac<2>\Biggr) = \Biggl(\frac<2>\Biggr)^2+3 \cdot \Biggl(\frac<2>\Biggr) +2 = \frac<4>+ \frac<3> <2>x+2 $$

По сравнению с графиком $y = f(x) = x^2+3x+2$:

  • график функции y = f(2x) сжимается в 2 раза по оси OX(→)
  • график функции $y = f \left(\frac<2>\right)$ растягивается в 2 раза по оси OX(←)
  • график функции y = 2f(x) растягивается в 2 раза по оси OY(↑)

Источник

Преобразования графиков тригонометрических функций

Общие принципы преобразования графиков функций изучались нами в главе 8, (см. §47, §48, §50 справочника для 8 класса). В этом параграфе мы рассмотрим особенности тригонометрических функций при использовании этих преобразований.

п.1. Растяжение и сжатие графиков тригонометрических функций по оси OX

Общие принципы растяжения и сжатия графиков по оси OX:

При сравнении графиков двух функций $$ y_1=f(x),\ \ y_2=f(\frac

),\ \ p\gt 1 $$ график второй функции растягивается в p раз по оси OX по сравнению с графиком первой функции.

Эти принципы справедливы и для тригонометрических функций.
Тригонометрические функции являются периодическими: синус и косинус с периодом , тангенс и котангенс – с периодом π. Получаем следствие общих принципов:

При сравнении двух тригонометрических функций $$ y_1=f(x),\ \ y_2=f(px),\ \ p\gt 1 $$ период второй функции уменьшается в p раз: $$ T_2=\frac

$$

При сравнении двух тригонометрических функций $$ y_1=f(x),\ \ y_2=f(\frac

),\ \ p\gt 1 $$ период второй функции увеличивается в p раз: $$ T_2=pT_1 $$

Построим в одной системе координат три графика: $$ f(x)=sinx,\ \ g(x)=sin2x,\ \ h(x)=sin\frac <2>$$
Период колебаний функции \(g(x)=sin2x\) в 2 раза меньше: \(T_g=\frac<2\pi><2>=\pi\).
Период колебаний функции \(h(x)=sin\frac<2>\) в 2 раза больше: \(T_h=2\cdot 2\pi=4\pi\).

п.2. Растяжение и сжатие графиков тригонометрических функций по оси OY

Общие принципы растяжения и сжатия графиков по оси OY:

Общий принцип сжатия графиков:

Эти принципы справедливы и для тригонометрических функций.
Т.к. для графиков синуса и косинуса (синусоиды) характерна амплитуда колебаний, то также говорят, что:

  • умножение на параметр \(A\gt 1\) увеличивает амплитуду колебаний в \(A\) раз;
  • деление на параметр \(A\gt 1\) уменьшает амплитуду колебаний в \(A\) раз.

Например:

1) Построим в одной системе координат три графика: $$ f(x)=cosx,\ \ g(x)=2cosx,\ \ h(x)=\frac<1><2>cosx $$
Умножение на \(A=2\) увеличивает амплитуду колебаний в 2 раза.
Область значений функции \(g(x)=2cosx:\ y\in[-2;2]\). График растягивается по оси OY.
Деление на \(A=2\) уменьшает амплитуду колебаний в 2 раза. Область значений функции \(h(x)=\frac12 cosx:\ y\in\left[-\frac12; \frac12\right]\). График сжимается по оси OY.

2) Теперь построим $$ f(x)=tgx,\ \ g(x)=2tgx,\ \ h(x)=\frac<1><2>tgx $$
В этом случае хорошей иллюстрацией растяжения по оси OY при умножении и сжатия по оси OY при делении на \(A=2\) служит поведение функции при \(x=\frac\pi4\). $$ f\left(\frac\pi4\right)=tg\left(\frac\pi4\right)=1,\ \ g\left(\frac\pi4\right)=2tg\left(\frac\pi4\right)=2,\ \ h\left(\frac\pi4\right)=\frac12 tg\left(\frac\pi4\right)=\frac12 $$ Аналогично – для любого другого значения аргумента x.

п.3. Параллельный перенос графиков тригонометрических функций по оси OX

Общие принципы переноса по оси OX:

Эти принципы справедливы и для тригонометрических функций.
При этом параметр x называют начальной фазой колебаний.
При сравнении двух тригонометрических функций \(y_1=f(x)\) и \(y_2=f(x\pm a)\) говорят, что у второй функции сдвиг по фазе равен \(\pm a\).

1) Построим в одной системе координат три графика: $$ f(x)=sinx,\ \ g(x)=sin\left(x+\frac\pi4\right),\ \ h(x)=sin\left(x-\frac\pi4\right) $$
Функция \(g(x)=sin\left(x+\frac\pi4\right)\) сдвинута на \(\frac\pi4\) влево по сравнению с \(f(x)\)
Функция \(h(x)=sin\left(x-\frac\pi4\right)\) сдвинута на \(\frac\pi4\) вправо по сравнению с \(f(x)\)

п.4. Параллельный перенос графиков тригонометрических функций по оси OY

Общие принципы переноса по оси OY:

Эти принципы справедливы и для тригонометрических функций.

1) Построим в одной системе координат три графика: $$ f(x)=sinx,\ \ g(x)=sinx+1,\ \ h(x)=sinx-1 $$
Функция \(g(x)=sinx+1\) сдвинута на 1 вверх по сравнению c \(f(x)\)
Функция \(h(x)=sinx-1\) сдвинута на 1 вниз по сравнению с \(f(x)\)

п.5. Общее уравнение синусоиды

График \(y(x)=Acos(cx+d)+B\) также называют синусоидой. Термин «косинусоида» употребляется относительно редко.
Поскольку график косинуса получается из графика синуса сдвигом по фазе на π/2 влево, вводить термин «косинусоида» излишне.

Построим график \(g(x)=3sin\left(2x+\frac\pi2\right)-1\)
По сравнению с \(f(x)=sinx\):

  • \(A=3\) — график растянут по оси OY в 3 раза
  • \(c=2\) — период меньше в 2 раза T=π, график сжат в 2 раза по оси OX
  • \(d=\frac\pi2\) – начальная фаза положительная, график сдвинут на \(\frac<\pi><2\cdot 2>=\frac\pi4\) влево
  • \(B=-1\) — график сдвинут по оси OY на 1 вниз

п.6. Общее уравнение тангенцоиды

График \(y(x)=Actg(cx+d)+B\) также называют тангенцоидой.

Построим график \(g(x)=\frac12 tg\left(\frac<2>-\frac\pi3\right)+1\)
По сравнению с \(f(x)=tgx\):

  • \(A=\frac12\) — график сжат по оси OY в 2 раза
  • \(c=\frac12\) — период больше в 2 раза T=2π, расстояние между асимптотами 2π, график растянут в 2 раза по оси OX
  • \(d=-\frac\pi3\) – начальная фаза отрицательная, график сдвинут на \(\frac<\pi><3\cdot 1/2>=\frac<2\pi><4>\) вправо
  • \(B=1\) — график сдвинут по оси OY на 1 вверх

п.7. Примеры

Пример 1. Постройте в одной системе координат графики: $$ f(x)=sinx,\ \ g(x)=-sinx,\ \ h(x)=cosx $$ Найдите сдвиг по фазе для \(g(x)\) и \(h(x)\) в сравнении с \(f(x)\).

Сдвиг по фазе удобно определять по главной арке синусоиды.
Для \(f(x)=sin⁡x\) главная арка определена на отрезке \(0\leq x\leq \pi\)
Для \(g(x)=-sin⁡x\) главная арка определена на отрезке \(-\pi\leq x\leq 0\), т.е. сдвинута на π влево от \(f(x)\). Это означает, что: $$ f(x)=g(x+\pi),\ \ sin⁡x=-sin⁡(x+\pi) $$ Для \(h(x)=cos⁡x\) главная арка определена на отрезке \(-\frac\pi2\leq x\leq \frac\pi2\), т.е. сдвинута на \(\frac\pi2\) влево от \(f(x)\). Это означает, что: $$ f(x)=h\left(x+\frac\pi2\right),\ \ sinx=cos\left(x+\frac\pi2\right) $$

Пример 2. Найдите наименьшие положительные периоды функций:
a) \(y=sin5x\)
Период синуса \(2\pi\) уменьшается в 5 раз. Получаем: \(T=\frac<2\pi><5>\)

б) \(y=cos\pi x\)
Период косинуса \(2\pi\) уменьшается в \(\pi\) раз. Получаем: \(T=\frac<2\pi><\pi>=2\)

в) \(y=tg\frac<4>\)
Период тангенса \(\pi\) увеличивается в 4 раза. Получаем: \(T=4\pi\)

г) \(y=tg\left(2x+\frac<\pi><3>\right)\)
Период тангенса \(\pi\) уменьшается в 2 раза. Получаем: \(T=\frac\pi2\)

Пример 3. Используя правила преобразования графиков функций, постройте график $$ f(x)=2ctg\left(3x+\frac\pi6\right) $$ По сравнению с \(g(x)=tg⁡x\):

  • \(A=2\) — график растянут по оси OY в 2 раза
  • \(c=3\) — период меньше в 3 раза \(T=\frac\pi3\), расстояние между асимптотами \(\frac\pi3\), график сжат в 3 раза по оси OX
  • \(d=-\frac\pi6\) – начальная фаза положительная, график сдвинут на \(\frac<\pi><6\cdot 3>=\frac<\pi><18>\) влево

Расположение нулей: $$ tg\left(3x+\frac\pi6\right)=0\Rightarrow 3x+\frac\pi6=\pi k\Rightarrow 3x=-\frac\pi6+\pi k\Rightarrow x =-\frac<\pi><18>+\frac<\pi k> <3>$$ Вертикального сдвига нет, нули расположены на оси OX.
Расположение асимптот: $$ 3x+\frac\pi6\ne\frac\pi2+\pi k\Rightarrow 3x\ne\frac\pi3+\pi k\Rightarrow x\ne\frac\pi9+\frac<\pi k> <3>$$ Пересечение главной ветви с осью OY: \(x=0,\ y=2tg\frac\pi6=\frac<2><\sqrt<3>>\)
С учетом периода \(\frac\pi3\) получаем семейство дополнительных точек для построения графика \(\left(\frac<\pi k><3>; \frac<2><\sqrt<3>>\right)\).

Пример 4. Определите графически, сколько корней имеет уравнение на отрезке: a) \(sinx=sin2x\) при \(0\leq x\leq 3\pi\)

Ответ: 7 корней

б) \(cos\frac<2>=cos2x\) при \(-2\pi\leq x\leq 2\pi\)

Ответ: 7 корней

Источник

Оцените статью