Что значит провести биссектрису смежного с ним угла

Биссектриса — это луч разрезающий угол пополам, а также отрезок в треугольнике обладающий рядом свойств

Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Сегодня мы поговорим о таком термине, как БИССЕКТРИСА.

Это понятие широко применяется в геометрии. И каждый школьник в России знакомится с ним уже в 5 классе. А после эта величина часто используется для решения различных задач.

Биссектриса — это.

Биссектриса – это луч, который выходит из вершины треугольника и делит ее ровно на две части.

Также под биссектрисой принято понимать и длину отрезка (что это?), который начинается в вершине треугольника, а заканчивается на противоположной от этой вершины стороне.

Есть еще понятие «биссектриса угла», которая является лучом и точно так же делит угол (любой, не обязательно треугольника) пополам:

Само понятие БИССЕКТРИСА пришло к нам из латинского языка. И название это весьма говорящее. Оно состоит из двух слов – «bi» означает «двойное, пара», а «sectio» можно дословно перевести, как «разрезать, поделить».

Вот и получается, что само слово БИССЕКТРИСА – это «разрезание пополам», что собственно и отражается в определении термина, который мы только что привели.

А сейчас задачка на закрепление материала. Посмотрите на эти рисунки и скажите, на каком изображена биссектриса. Подумали? Правильно, на втором.

На первом луч, выходящий из угла АОВ, явно не делит его пополам. На втором это соотношение углов более очевидно, а потому можно предположить, что луч ОД является БИССЕКТРИСОЙ. Хотя, конечно, на сто процентов это утверждать сложно.

Для более точного определения используют специальные инструменты. Например, транспортир. Это такой инструмент в виде полусферы из металла или пластмассы. Вот как он выглядит:

Хотя есть еще вот такие варианты:

Наверняка у каждого такие были в школе. И пользоваться ими весьма просто. Надо только ровненько совместить основание транспортира (прямоугольная линейка) с основанием треугольника, а после на полусфере отметить значение, которое соответствует размеру угла.

И точно по такой же схеме можно поступить наоборот – имея транспортир, начертить угол необходимого размера. Чаще всего – от 0 до 180 градусов. Но на втором рисунке у нас транспортир, который помогает начертить градусы от 0 до 360.

Количество биссектрис в треугольнике

Но вернемся к нашей главной теме. И ответим на вопрос – сколько БИССЕКТРИС есть в треугольнике?

Ответ в общем-то логичен, и он заложен в самом названии нашей геометрической фигуры. Треугольник – три угла. А соответственно, и биссектрис в нем будет тоже три – по одной на каждую вершину.

Снова посмотрим на наши рисунки. В данном случае наглядно видно, что у треугольника АВС (именно так в геометрии обозначается эта фигура – по наименованию ее вершин) три БИССЕКТРИСЫ. Это отрезки AD, BE и CF.

На чертежах БИССЕКТРИСЫ обозначатся следующим образом. Видите одинарные выгнутые черточки между отрезками АС /AL1 и АВ/AL1? Так обозначаются углы. А то, что они оба обозначены одинаковыми черточками, говорит о том, что углы равны. А значит, отрезок AL1 является БИССЕКТРИСОЙ.

То же самое относится и к углам между АВ/DL2 и ВС/BL2. Они обозначены одинаковыми двойными черточками. А значит, отрезок BL2 – биссектриса. А углы АС/CL3 и ВС/CL3 обозначены тройными черточками. Соответственно, это показывает, что отрезок CL3 также является биссектрисой.

Пересечение биссектрис треугольника

Как можно было заметить по приведенным выше рисункам, у биссектрис треугольника есть одно важное свойство. А именно:

Биссектрисы треугольника всегда пересекаются в одной точке, называемой инцентром!

Это правило является аксиомой (что это такое?) и не допускает никаких исключений. Другими словами, вот такого быть не может:

Если вы видите такую картину, то перед вами точно не БИССЕКТРИСЫ. Во всяком случае, минимум один отрезок таковой не является. А может и все три.

А есть еще один интересный факт, связанный с пересечением биссектрис треугольника.

Центр пересечения биссектрис в треугольнике является центром окружности, который списан в эту фигуру.

Это свойство биссектрис на самом деле не только выглядит интересно на чертежах. Оно часто помогает в решение сложных задач.

Свойство основания биссектрисы

У каждой БИССЕКТРИСЫ есть основание. Так называют точку пересечения со стороной треугольника. Например, в нашем случае это будет точка К.

И с этим основанием связана одна весьма интересная теорема. Она гласит, что

Биссектриса треугольника делит противоположную сторону, то есть точкой основания, на два отрезка. И их отношение равно отношению двух прилежащих сторон.

Звучит несколько тяжеловато, но на деле выглядит весьма просто. Отношение отрезков на основании биссектрисы – это ВК/КС. А отношение прилежащих сторон – это АВ/АС. И получается, что в нашем случае теорема выглядит вот так:

Интересно, что для данной теоремы будет справедливо и другое утверждение:

Ну, как часто бывает в математике – это правило работает и в обратном направлении. То есть, если вы знаете длины все сторон и их соотношения равны, то можно сделать вывод, что перед нами БИССЕКТРИСА, А соответственно, будет проще рассчитать размер угла треугольника.

Биссектриса равнобедренного треугольника

Для начала напомним, что такое равнобедренный треугольник.

Это такой треугольник, у которого две стороны абсолютно равны (то есть имеет равные «бедра»).

Так вот в таком треугольнике БИССЕКТРИСА имеет весьма интересные свойства.

Она одновременно является еще и медианой (что это?), и высотой.

Эти понятия нам также знакомы по школьному курсу. Но если кто забыл, мы обязательно напомним:

  1. Высота – линия, которая выходит из вершины треугольника и опускается на противоположную сторону под прямым углом.
  2. Медиана – линия, которая выходит из вершины треугольника, и делит противоположную сторону на две ровные части.

А в равностороннем треугольнике или как его еще называют правильном (у которого все стороны и все углы равны) все три биссектрисы являются высотами и медианами. И плюс ко всему, их длины равны.

Вот и все, что нужно знать о таком понятии, как БИССЕКТРИСА. До новых встреч на страницах нашего блога.

Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru

Эта статья относится к рубрикам:

Комментарии и отзывы (3)

«Высота – линия, которая выходит из вершины треугольника и опускается на противоположную сторону под прямым углом.

Медиана – линия, которая выходит из вершины треугольника, и делит противоположную сторону на две ровные части.»

Некорректно, линия бывает разная,а речь здесь идет о прямой, или её порождениях: отрезок и луч.

Математика требует точности. Спасибо.

При ознакомлении с таким теоретическим материалом всегда возникает вопрос, как можно использовать знания о биссектрисе в реальной жизни, за пределами учебного заведения.

Необходимость делать уроки с собственным ребенком в счет не идет. Конечно, такая информация повышает общую эрудицию, но не несет никакой практической нагрузки, а потому надолго не задерживается в памяти.

Никогда не был силен в геометрии, но наука эта очень важна, знаю, потому как не раз приходилось подтягивать свои знания для решения практических задач.

Источник

Биссектрисы смежных углов

Зависит ли угол, который образуют между собой биссектрисы смежных углов, от градусных мер этих углов?

Биссектрисы смежных углов перпендикулярны.

Дано: ∠AOD и ∠DOB — cмежные,

OF — биссектриса ∠AOD,

OK — биссектриса ∠DOB

Так как сумма смежных углов равна 180º, то ∠AOD+∠DOB=180º.

Так как OF — биссектриса ∠AOD, то

Так как OK — биссектриса ∠DOB, то

Таким образом, мы доказали, что угол между биссектрисами смежных углов не зависит от градусной меры смежных углов и всегда равен 90º , то есть, биссектрисы смежных углов перпендикулярны.

Найти угол между биссектрисами смежных углов, один из которых на 100º больше другого.

Так как биссектрисы смежных углов перпендикулярны, ∠FOK=90º.

(Находить градусные меры смежных углов не требуется).

Источник

Биссектриса угла. Свойства

Определение 1. Биссектриса угла − это луч, исходящий из вершины угла и делящий этот угол в два равных угла.

Докажем следующую теорему:

Теорема 1. 1) Каждая точка биссектрисы неразвернутого угла равноудалена от его сторон. 2) Каждая точка, которая находится внутри угла и равноудалена от сторон угла, лежит на его биссектрисе.

Доказательство. 1) На биссектрисе угла BAC отметим произвольную точку D. Проведем от точки D перпендикуляры DK и DL к прямым AB и AC, соответственно (Рис.1). Докажем, что DK=DL. Рассмотрим прямоугольные треугольники AKD и ALD. Они равны по гипотенузе и острому углу т.е. \( \small ∠1=∠2 \) , AD общая (см. статью Прямоугольный треугольник). Следовательно DK=DL.

2) Пусть точка D лежит внутри угла BAC и равноудалена от его сторон AB и AC. Докажем, что AD является биссектрисей угла BAC (Рис.1). Проведем перпендикуляры DK и DL к прямым AB и AC. Прямоугольные треугольники AKD и ALD равны по катету и гипотенузе. Действительно, гипотенуза AD общая и по условию DK=DL. Но тогда прямоугольные треугольники AKD и ALD равны. Следовательно \( \small ∠1=∠2 \). А это означает, что луч AD является биссектрисей угла BAC.

Исходя из теоремы 1, можно дать другое определение биссектрисы:

Определение 2. Биссектриса угла − это геометрическое место точек внути угла, равноудаленных от сторон этого угла.

Свойство 1. Угол между биссекстрисами смежных углов равна 90°.

Доказательство. Даны смежные углы CAB и BAD (Рис.2). Покажем, что \( \small ∠EAF=90° \) или . Действительно:

Источник

Читайте также:  Имя альфия что оно значит
Оцените статью