- Наибольшее и наименьшее значение функции.
- Наибольшее и наименьшее значение функции — определения, иллюстрации.
- Алгоритм нахождения наибольшего и наименьшего значения непрерывной функции на отрезке [a;b] .
- Алгоритм нахождения наибольшего и наименьшего значения непрерывной функции на открытом или бесконечном интервале X .
Наибольшее и наименьшее значение функции.
С практической точки зрения наибольший интерес представляет использование производной для нахождения наибольшего и наименьшего значения функции. С чем это связано? Максимизация прибыли, минимизация издержек, определение оптимальной загрузки оборудования. Другими словами, во многих сферах жизни приходится решать задачи оптимизации каких-либо параметров. А это и есть задачи на нахождение наибольшего и наименьшего значения функции.
Следует отметить, что наибольшее и наименьшее значение функции обычно ищется на некотором интервале X , который является или всей областью определения функции или частью области определения. Сам интервал X может быть отрезком , открытым интервалом
, бесконечным промежутком
.
В этой статье мы будем говорить о нахождении наибольшего и наименьшего значений явно заданной функции одной переменной y=f(x) .
Навигация по странице.
Наибольшее и наименьшее значение функции — определения, иллюстрации.
Кратко остановимся на основных определениях.
Наибольшим значением функции y=f(x) на промежутке X называют такое значение , что для любого
справедливо неравенство
.
Наименьшим значением функции y=f(x) на промежутке X называют такое значение , что для любого
справедливо неравенство
.
Эти определения интуитивно понятны: наибольшее (наименьшее) значение функции – это самое большое (маленькое) принимаемое значение на рассматриваемом интервале при абсциссе .
Стационарные точки – это значения аргумента, при которых производная функции обращается в ноль.
Для чего нам стационарные точки при нахождении наибольшего и наименьшего значений? Ответ на этот вопрос дает теорема Ферма. Из этой теоремы следует, что если дифференцируемая функция имеет экстремум (локальный минимум или локальный максимум) в некоторой точке, то эта точка является стационарной. Таким образом, функция часто принимает свое наибольшее (наименьшее) значение на промежутке X в одной из стационарных точек из этого промежутка.
Также часто наибольшее и наименьшее значение функция может принимать в точках, в которых не существует первая производная этой функции, а сама функция определена.
Сразу ответим на один из самых распространенных вопросов по этой теме:»Всегда ли можно определить наибольшее (наименьшее) значение функции»? Нет, не всегда. Иногда границы промежутка X совпадают с границами области определения функции или интервал X бесконечен. А некоторые функции на бесконечности и на границах области определения могут принимать как бесконечно большие так и бесконечно малые значения. В этих случаях ничего нельзя сказать о наибольшем и наименьшем значении функции.
Для наглядности дадим графическую иллюстрацию. Посмотрите на рисунки – и многое прояснится.
На первом рисунке функция принимает наибольшее ( max y ) и наименьшее ( min y ) значения в стационарных точках, находящихся внутри отрезка [-6;6] .
Рассмотрим случай, изображенный на втором рисунке. Изменим отрезок на [1;6] . В этом примере наименьшее значение функции достигается в стационарной точке, а наибольшее — в точке с абсциссой, соответствующей правой границе интервала.
На рисунке №3 граничные точки отрезка [-3;2] являются абсциссами точек, соответствующих наибольшему и наименьшему значению функции.
На открытом интервале
На четвертом рисунке функция принимает наибольшее ( max y ) и наименьшее ( min y ) значения в стационарных точках, находящихся внутри открытого интервала (-6;6) .
На интервале [1;6) наименьшее значение функции достигается в стационарной точке, а про наибольшее значение мы ничего сказать не можем. Если бы точка x=6 была частью интервала, тогда при этом значении функция принимала бы наибольшее значение. Этот пример изображен на рисунке №5.
На рисунке №6 наименьшее значение функции достигается в правой границе интервала (-3;2] , о наибольшем значении никаких выводов сделать нельзя.
В примере, представленном на седьмом рисунке, функция принимает наибольшее значение ( max y ) в стационарной точке с абсциссой x=1 , а наименьшее значение ( min y ) достигается на правой границе интервала. На минус бесконечности значения функции асимптотически приближаются к y=3 .
На интервале функция не достигает ни наименьшего, ни наибольшего значения. При стремлении к x=2 справа значения функции стремятся к минус бесконечности (прямая x=2 является вертикальной асимптотой), а при стремлении абсциссы к плюс бесконечности, значения функции асимптотически приближаются к y=3 . Графическая иллюстрация этого примера приведена на рисунке №8.
Алгоритм нахождения наибольшего и наименьшего значения непрерывной функции на отрезке [a;b] .
Запишем алгоритм, позволяющий находить наибольшее и наименьшее значение функции на отрезке.
- Находим область определения функции и проверяем, содержится ли в ней весь отрезок [a;b] .
- Находим все точки, в которых не существует первая производная и которые содержатся в отрезке [a;b] (обычно такие точки встечаются у функций с аргументом под знаком модуля и у степенных функций с дробно-рациональным показателем). Если таких точек нет, то переходим к следующему пункту.
- Определяем все стационарные точки, попадающие в отрезок [a;b] . Для этого, находим производную функции, приравниваем ее к нулю, решаем полученное уравнение и выбираем подходящие корни. Если стационарных точек нет или ни одна из них не попадает в отрезок, то переходим к следующему пункту.
- Вычисляем значения функции в отобранных стационарных точках (если такие имеются), в точках, в которых не существует первая производная (если такие имеются), а также при x=a и x=b .
- Из полученных значений функции выбираем наибольшее и наименьшее — они и будут искомыми наибольшим и наименьшим значениями функции соответственно.
Разберем алгоритм при решении примера на нахождение наибольшего и наименьшего значения функции на отрезке.
Найти наибольшее и наименьшее значение функции
- на отрезке [1;4] ;
- на отрезке [-4;-1] .
Областью определения функции является все множество действительных чисел, за исключением нуля, то есть . Оба отрезка попадают в область определения.
Находим производную функции по правилу дифференцирования дроби:
Очевидно, производная функции существует во всех точках отрезков [1;4] и [-4;-1] .
Стационарные точки определим из уравнения . Единственным действительным корнем является x=2 . Эта стационарная точка попадает в первый отрезок [1;4] .
Для первого случая вычисляем значения функции на концах отрезка и в стационарной точке, то есть при x=1 , x=2 и x=4 :
Следовательно, наибольшее значение функции достигается при x=1 , а наименьшее значение
– при x=2 .
Для второго случая вычисляем значения функции лишь на концах отрезка [-4;-1] (так как он не содержит ни одной стационарной точки):
Следовательно, .
Алгоритм нахождения наибольшего и наименьшего значения непрерывной функции на открытом или бесконечном интервале X .
Прежде чем ознакомиться с алгоритмом нахождения наибольшего и наименьшего значения функции на открытом или бесконечном интервале рекомендуем повторить определения одностороннего предела и предела на бесконечности, а также способы нахождения пределов.
Проверяем, является ли интервал X подмножеством области определения функции.
Находим все точки, в которых не существует первая производная и которые содержатся в интервале X (обычно такие точки встечаются у функций с аргументом под знаком модуля и у степенных функций с дробно-рациональным показателем). Если таких точек нет, то переходим к следующему пункту.
Определяем все стационарные точки, попадающие в промежуток X . Для этого приравниваем производную функции к нулю, решаем полученное уравнение и выбираем подходящие корни.
Если стационарных точек нет или ни одна из них не попадает в интервал, то переходим к следующему пункту.
Вычисляем значения функции в стационарных точках и точках, в которых не существует первая производная функции (если такие точки есть).
Дальнейшие действия зависят от интервала X .
Если интервал X имеет вид:
- [a;b) , то вычисляем значение функции в точке x=a и односторонний предел
;
- (a;b] , то вычисляем значение функции в точке x=b и односторонний предел
;
- (a;b) , то вычисляем односторонние пределы
;
, то вычисляем значение функции в точке x=a и предел на плюс бесконечности
;
, то вычисляем односторонний предел
и предел на плюс бесконечности
;
, то вычисляем значение функции в точке x=b и предел на минус бесконечности
;
, то вычисляем односторонний предел
и предел на минус бесконечности
;
, то вычисляем пределы на плюс и минус бесконечности
.
Делаем выводы, отталкиваясь от полученных значений функции и пределов. Здесь может быть масса вариантов. К примеру, если односторонний предел равен минус бесконечности (плюс бесконечности), то о наименьшем (наибольшем) значении функции ничего сказать нельзя для данного интервала. Ниже разобраны несколько типичных примеров. Надеемся подробные описания их решения помогут Вам усвоить тему. Рекомендуем вернуться к рисункам с №4 до №8 из первого раздела этой статьи.
Найти наибольшее и наименьшее значение функции на интервалах:
- (-3;1]
- (-3;2)
- [1;2)
Начнем с области определения функции. Квадратный трехчлен в знаменателе дроби не должен обращаться в ноль:
Легко проверить, что все интервалы из условия задачи принадлежат области определения функции.
Продифференцируем функцию:
Очевидно, производная существует на всей области определения функции.
Найдем стационарные точки. Производная обращается в ноль при . Эта стационарная точка попадает в интервалы (-3;1] и (-3;2) .
Для первого промежутка вычисляем значение функции при x=-4 и предел на минус бесконечности:
Так как , то
, а о наименьшем значении функции выводов сделать нельзя. Можно лишь утверждать, что значения функции ограничены снизу значением -1 (на минус бесконечности значения функции асимптотически приближаются к прямой y=-1 ).
Второй интервал интересен тем, что не содержит ни одной стационарной точки и ни одна из его границ не является строгой. В этом случае мы не сможем найти ни наибольшего, ни наименьшего значения функции. Вычислив предел на минус бесконечности и при стремлении аргумента к минус трем слева, мы лишь сможем определить интервал значений функции:
Следовательно, значения функции находятся в интервале при x из промежутка
.
Для третьего промежутка (-3;1] вычислим значение функции в стационарной точке и при x=1 , а также односторонний предел, при стремлении аргумента к -3 справа:
Следовательно, наибольшее значение на этом интервале функция принимает в стационарной точке , наименьшее значение функции мы вычислить не можем, но значения функции ограничены снизу величиной -4 .
Для интервала (-3;2) воспользуемся результатами из предыдущего пункта и еще вычислим односторонний предел при стремлении к двойке слева:
Поэтому , наименьшее значение определить нет возможности, значения функции ограничены снизу величиной -4 .
Результаты предыдущих двух пунктов позволяют утверждать, что на интервале [1;2) наибольшее значение функция принимает при x=1 , наименьшее значение найти нельзя, значения функции ограничены снизу величиной -4 .
На промежутке функция не достигает ни наибольшего, ни наименьшего значения.
То есть, на этом интервале функция принимает значения из промежутка .
Вычислив значение функции при x=4 , можно утверждать, что и на плюс бесконечности функция асимптотически приближается к прямой y=-1 .
А теперь можно сопоставить полученные в каждом пункте результаты с графиком функции. Синими пунктирными линиями обозначены асимптоты.
На этом можно закончить с нахождением наибольшего и наименьшего значения функции. Алгоритмы, разобранные в этой статье, позволяют получить результаты при минимуме действий. Однако бывает полезно сначала определить промежутки возрастания и убывания функции и только после этого делать выводы о наибольшем и наименьшем значении функции на каком-либо интервале. Это дает более ясную картину и строгое обоснование результатов.
Источник