- Значение частного двух чисел в математике
- Что такое частное чисел
- Деление как операция
- Основные свойства деления
- Неполное частное
- Изменение частного в зависимости от изменения делимого и делителя
- Задачи, примеры вычисления частного
- Задача 1
- Задача 2
- Что такое частное чисел
- Определение частного чисел
- Что такое частное в математике?
- Деление
- Наглядные примеры
- Проверка
- Полное и неполное частное
- Частное в математике — определение, свойства и формула
- Основное свойство частного
- Увеличение или уменьшение делимого
- Увеличение или уменьшение делителя
Значение частного двух чисел в математике
Что такое частное чисел
Частное чисел – это результат деления одного числа на другое. Оно показывает, сколько раз число a содержится в числе b.
Деление как операция
Деление – арифметическая операция, обратная умножению, суть которой заключается в нахождении одного из сомножителей по произведению и другому множителю. В данном случае произведение переходит в делимое, имеющийся сомножитель – в делитель, искомый сомножитель – в частное.
Подобно тому, как неоднократно прибавить число – это значит умножить, так и неоднократно вычесть – это значит разделить.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
На письме данную операцию можно обозначать разными символами:
- : двоеточием;
- ÷ обелюсом;
- / косой чертой (слеш);
- — горизонтальной чертой (знак дроби).
Процесс деления имеет следующий вид:
В цифрах данное выражение можно записать так:
Основные свойства деления
Деление не коммутативно, то есть не перестановочно – от перемены мест элементов операции частное изменяется:
Деление не ассоциативно – то есть при последовательном выполнении деления трех или более чисел последовательность операций имеет значение, при смене порядка выполнения изменится результат:
Деление дистрибутивно справа – на одном и том же множестве две бинарные операции имеют свойство согласованности:
\((a + b): x = (a : x)+(b : x);\)
Имеется единственный нейтральный элемент – число 1, при делении на единицу результатом является исходное число (делимое):
Имеется единственный обратный элемент – число 1, при делении единицы на число результатом является число, обратное исходному (делителю):
Существует единственный нулевой элемент – число 0, при делении нуля на любое число результатом будет нуль:
Деление на нулевой элемент не определено:
Деление на противоположный элемент дает минус единицу:
Неполное частное
Неполное частное – результат, который получился после деления с остатком.
Под делением с остатком понимается нахождение наибольшего целого числа, которое в произведении с делителем дает число, не превышающее делимое. Это искомое и называют неполным частным.
Разность между делимым и произведением делителя на неполное частное называется остатком, который всегда меньше делителя.
Например, 17 не делится без остатка на 5.
Наибольшее число, результат умножения которого на 5 не превосходит 17, это 3. 3 в данном случае является неполным частным.
Чтобы получить остаток, нужно из 17 вычесть произведение 3 и 5, то есть 17 – 3*5 = 2. Остаток – 2.
Изменение частного в зависимости от изменения делимого и делителя
- увеличение делимого в несколько раз приведет к тому, что частное увеличится во столько же раз:
- уменьшение делимого в несколько раз приведет к тому, что частное уменьшится во столько же раз:
- увеличение делителя в несколько раз приведет к тому, что частное уменьшится во столько же раз:
- уменьшение делителя в несколько раз приведет к тому, что частное увеличится во столько же раз:
Частное не изменится, если делимое и делить одновременно увеличить или уменьшить в одинаковое количество раз:
Задачи, примеры вычисления частного
Для того, чтобы проиллюстрировать данную арифметическую операцию, решим простые задачи.
Задача 1
В книге 891 страница. Она поделена на 9 равных глав. Узнайте, сколько страниц в одной главе.
Для этого количество страниц разделим на количество глав:
891 : 9 = 99 (страниц)
Ответ: 99 страниц.
Задача 2
У Антона есть 22 апельсина. Он хочет приготовить из них компот. Для одного литра компота ему понадобится 3 апельсина. Нужно вычислить, сколько литров напитка сможет приготовить Антон и сколько апельсинов у него останется.
Источник
Что такое частное чисел
Определение частного чисел
Частное чисел — это результат деления одного числа на другое. Таким образом, частное чисел $a$ и $b$ будет число $c$, которое равно $c = a : b$ . При этом число $a$ будет делимым, а число $b$ — делителем.
Задание. Найти частное чисел:
1) $39 : 3$ ; 4) $124 : 4$
Ответ. $39 : 3 = 13$
Для нахождения частного больших чисел или десятичных дробей используют способ деления в столбик.
Что такое частное чисел не по зубам? Тебе ответит эксперт через 10 минут!
Задание. Найти частное чисел:
1) $564 : 12$ ; 2) $0,567 : 0,21$
Решение. Для нахождения частного в первом примере выполним деление в столбик. Для этого запишем делимое и делитель следующим образом
Берем первую цифру слева, она не делится на 12, значит, берем две цифры: 56 и делим их на 12 с остатком. Возьмем по $4 : 4 \cdot 12 = 48$ . Записываем 48 под 56 и находим остаток: $56 — 48 = 8$ . Восьмерку записываем под чертой и сносим к ней следующее число из делимого, получим 84. Делим 84 на 12, получаем 7. остаток от деления 0 и цифр в делимом больше нет. Деление окончено.
Таким образом, $564 : 12 = 47$
Для нахождения частного во втором примере, сведем деление десятичных дробей к делению десятичной дроби на целое число. Для этого будем передвигать запятую вправо у делимого и делителя до тех пор, пока делимое не станет целым числом. Далее запишем полученные числа в столбик, как и в первом примере:
Берем в делимом первые две цифры слева и делим их на делимое с остатком. Получаем $56 : 21$ , можно взять по 2. Двойку записываем в частное. И так как целая часть делимого закончилась, ставим в частном запятую. Умножаем $2 \cdot 21 = 42$ , записываем 42 под 56 и вычитаем: $56 — 42 = 14$ . Остаток 14 списываем к нему следующую незадействованную цифру делимого 7. Полученное число 147 делим на 12, получаем 7. Записываем семерку в частное, и, так как на этом делимое закончилось, а остаток после последнего деления 0, деление окончено.
Таким образом $0,567 : 0,21 = 2,7$
Ответ. $564 : 12 = 47$
Частное рациональных дробей находится по правилу
Задание. Найти частное рациональных дробей:
Решение. 1) Воспользуемся правилом вычисления частного рациональных дробей:
Для вычисления частного во втором примере, сначала запишем дроби в виде неправильных дробей. Для этого целую часть умножим на знаменатель и прибавим к числителю. Затем применим правило вычисления частного рациональных дробей:
Ответ. $\frac<2><3>: \frac<1><3>=2$
Источник
Что такое частное в математике?
Математика – уникальная наука, которая привлекает точностью и последовательностью. Каждый, кто начал изучать эту важную дисциплину, должен разобраться, что такое частное в математике.
Деление
В математике есть четыре простейших операции:
Если мы говорим о частном, то нас будет интересовать такая операция, как деление.
Деление всегда обратно умножению. Это математическая величина, которую мы получим, разделив одно число на другое. Есть ряд символов, которые обозначают его:
- Двоеточие (:)
- Косая черта (/)
- Обелюс (тире между двумя точками ÷)
В учебных пособиях для учеников 1 – 5 классов есть простое и точное определение этого понятия. Деление – это операция, в результате которой мы получаем число, которое при умножении на делитель дает делимое. Число, о котором говорится в первой части определения, и есть частное.
Частное рассказывает, во сколько раз одно число больше другого.
Наглядные примеры
Чтобы лучше понять, что такое частное чисел в математике, следует обратиться к примерам. Они помогут разложить знания по полочкам в вашей голове. Решение примеров – это лучший тренажер для усвоения новых знаний. Приступим к их решению.
Итак, частное получается, если делимое поделить на делитель. При помощи символов эту операцию можно записать следующим образом:
a:b=c
Запишем простой пример из математики:
80:2=40
80 – делимое (оно делится)
2 – это делитель (на него разделяют)
Восемьдесят больше, чем сорок, в два раза.
Другой пример выглядит так:
120:2=60
Сто двадцать больше, чем шестьдесят, в два раза.
Проверка
Если вы провели операцию деления и сомневаетесь в результате, на помощь придет проверка. Для этого умножьте делитель на частное. Если в результате вы получили делимое, то пример решен верно:
Если после знака равно вы увидели знакомое вам делимое, то можете поставить себе твердую пятерку. Вы научились находить частное чисел и делать проверку. Это очень важно, чтобы в дальнейшем освоить более сложные понятия в алгебре и геометрии.
Частное – это основа математики. Если ученик не смог понять его суть, то двигаться дальше просто бессмысленно. Обратитесь к учителю, если это понятие так и осталось для вас туманным. Педагог разъяснит все ошибки и укажет на подводные камни.
Полное и неполное частное
В результате проведения математических подсчетов частное может быть двух видов:
- Полное. В результате деления мы получаем целое число:
100:2=50
50 – полное частное
- Неполное. Если в результате мы получаем остаток:
51:2=25 (остаток 1)
25 – неполное частное
1 – остаток от деления
Если вы откроете учебник математики, то увидите, что частное в задачах обозначают при помощи различных символов (переменных). Для этого используют латинские буквы:
30:6=x
Чтобы найти частное, следует делимое разделить на делитель:
Ответ 5 – это частное в данном примере.
Абстрактные определения и туманные рассуждения плохо усваиваются мозгом школьника. Поэтому всегда держите под рукой задачник со списком упражнений по математике. Он поможет понять различные математические категории на практике. Конкретные цифры, записанные в тетради, станут главными помощниками.
Источник
Частное в математике — определение, свойства и формула
Математика – царица наук. Она хоть и сложна, и многие боятся некоторых запутанных формул и вычислений, но все они состоят из простых арифметических действий сложения, вычитания, умножения и деления.
Производные операции от этих действий называются суммой, разностью, произведением и частным. Что такое частное в математике и каковы его главные свойства – будет подробно рассказано далее.
Основное свойство частного
Деление – это арифметическая операция, обратная умножению. С ее помощью можно просто узнать, сколько в первом числе содержится значений второго.
По аналогии с умножением, которое способно заменить собой многократное сложение, дробление способно заменить многократное вычитание.
Например, необходимо разделить 10 на 2. Это означает, что требуется узнать, сколько раз число 2 содержится в 10. Делая это вычитанием можно получить следующее:
10 — 2 — 2 — 2 — 2 — 2 = 0.
Проводя постепенное вычитание до нуля, можно определить, что двойка содержится в десятке ровно 5 раз и не образует остаток. Сделать это можно было однократно поделив два значения:
Частное чисел – это итог процесса деления одного значения на второе. Пример:
где 28 — делимое;
Одно из важнейших правил деления частного, называемое основным свойством частного, заключается в том, что если делимое и делитель умножить или разделить на одно и то же число, то итог этой операции и, соответственно частное, не изменится:
При делении числа самого на себя результатом всегда будет единица, то есть справедливо равенство:
Справедливо и другое правило: если разделить определенную величину на единицу, то итогом процесса будет сама эта величина, то есть делимое:
Увеличение или уменьшение делимого
Некоторые другие соотношения вытекают из этих. Например, если увеличить или уменьшить делимое в n раз, то в результате частное также повысится или понизится в n раз соответственно.
Изложенное правило имеет такой вид:
12 ⁄ 2 = 6 и пусть n = 3.
Проведём увеличение и уменьшение делимого:
(12∗3) /2 = 6∗3 — увеличили делимое на 3, равенство верное: 36 / 2 = 18;
(12 / 3) / 2 = 6 / 3 — уменьшили делимое на 3, равенство все равно верное: 4 / 2 = 2.
То есть, в три раза увеличив делимое, можно в три раза увеличить частное. Аналогично выполняется и уменьшение.
Увеличение или уменьшение делителя
Следующее правило звучит так: если увеличить или уменьшить делитель в n раз, то результат деления понизится или повысится в n-нное количество раз:
Для примера требуется взять частное двух значений 54 и 6:
a / b = c и пусть n = 3.
Проведём увеличение и уменьшение делителя:
54 / (6∗3) = 9 / 3 — увеличили делитель в 3 раза, равенство верное: 54 / 18 =3;
54 / (6 / 3) = 9∗3 — уменьшили делитель в 3 раза, получаем равенство: 54 / 2 = 27.
Увеличив делитель в 3 раза, во столько же раз уменьшили частное. Уменьшив делитель в три раза, делитель, напротив, увеличился в три раза.
Проверить эти «законы» можно в любом онлайн калькуляторе или вручную в уме или на бумаге.
Данные правила являются фундаментальными и составляют базу арифметики, с которой начинается математика и остальные области знаний.
Источник