Что значит последовательные цифры

Содержание
  1. Числовые последовательности для чайников: определение, формулы
  2. Последовательности чисел
  3. Какие бывают последовательности
  4. Арифметическая прогрессия
  5. Геометрическая прогрессия
  6. Способы задания последовательностей
  7. Предел последовательности
  8. Что нужно помнить, вычисляя пределы последовательностей
  9. Что значит последовательные числа
  10. Ответ или решение 1
  11. Числовая последовательность
  12. Числовой последовательностью называют ряд чисел, полученных по некоторому правилу или формуле.
  13. Числа, образующие последовательность, называются ее членами (или элементами). И каждое из этих чисел имеет свой порядковый номер.
  14. В математике последовательность обозначают маленькой латинской буквой, а каждый отдельный ее элемент – той же буквой с числовым индексом равным порядковому номеру этого элемента.
  15. Способы задания числовых последовательностей
  16. Как определить является ли число элементом последовательности?

Числовые последовательности для чайников: определение, формулы

  • 12 января 2021 г.
  • 10 минут
  • 81 539
  • 2

По просьбам читателей возобновляем рубрику «Математика для чайников». Говорим о числовых последовательностях и вычислении их пределов. Выясняем, чем последовательность отличается от простого набора чисел и как ее можно задать.

Нужно больше полезной и интересной информации? Этого добра много не бывает! Присоединяйтесь к нам в телеграм.

Последовательности чисел

Мы сталкиваемся с последовательностями чисел каждый день. Вот только встреча с последовательностями на экзамене может быть не самой приятной.

Чтобы было иначе, читаем эту статью, а если что-то непонятно, смело обращаемся к нашим консультантам за помощью.

Одна из самых интересных и известных последовательностей – числа Фибоначчи. Эта последовательность имеет удивительные свойства и часто встречается в природе. Например, семечки у подсолнуха упорядочены в две спирали. Числа, обозначающие количество семечек в каждой из них, являются членами последовательности Фибоначчи.

Что такое числовая последовательность?

Последовательность – это набор элементов множества, который удовлетворяет следующим условиям:

  • для каждого натурального числа существует элемент данного множества;
  • это число является номером элемента и обозначает позицию данного элемента в последовательности;
  • для любого элемента последовательности можно указать следующий за ним элемент.
Читайте также:  Чего бы это ни значило

Числовая последовательность – это функция переменной n, которая принадлежит множеству натуральных чисел N.

Существованием функции, по которой можно вычислить любой член последовательности, она и отличается от случайного набора чисел.

На словах звучит громоздко и сложно. Но на то это и математика, чтобы записывать все буквами и числами. Обычно последовательность обозначают буквой x, хотя можно применять и другие.

Какие бывают последовательности

  • постоянную, или монотонную последовательность: 1, 1, 1, 1, 1.
  • возрастающую последовательность, в которой каждый следующий элемент больше предыдущего
  • убывающую последовательность, в которой каждый следующий элемент меньше предыдущего

Также последовательности делятся на сходящиеся и расходящиеся. Сходящаяся последовательность имеет конечный предел. А предел расходящейся последовательности равен бесконечности, либо последовательность вообще не имеет предела. Но о пределах немного позже.

Рассмотрим самые известные примеры последовательностей. Еще со школы всем знакомы арифметическая и геометрическая прогрессии.

Арифметическая прогрессия

Посмотрим на числа:

Что у них общего? Они все нечетные и каждое следующее можно получить из предыдущего, прибавляя к нему одно и то же число. Назовем его d. В данном случае d=2.

Описанная выше последовательность – арифметическая прогрессия. Приведем основные формулы для нее:

Элемент a с номером n называется общим членом последовательности. А число d – разностью афифметической прогрессии.

Сумма первых n членов прогрессии вычисляется по формуле:

Также африфметическая прогрессия обладает характреристическим свойством:

Геометрическая прогрессия

Геометрической прогрессией называется последовательность чисел, каждый член которой, начиная со второго, равен предыдущему члену, умноженному на одно и то же число q – знаменатель прогрессии. Элементы геометрической прогрессии задаются соотношением:

Основные формулы для геометрической прогрессии приведены ниже. Формула n-го члена прогрессии:

Сумма первых n членов прогрессии:

Характеристическое свойство геометрической прогрессии:

Способы задания последовательностей

Последовательность можно задать несколькими способами:

  1. Аналитически или, проще говоря, формулой.
  2. Реккурентно. Здесь известно несколько первых членов прогрессии и есть формула, которая позволяет вычислить последующие.
  3. Описательно, простым перечислением всех элементов последовательности.

Предел последовательности

Мы уже говорили о пределах функций и способах их вычисления. Из определения последовательности следует, что последовательность – это и есть некоторая функция. Так что, вычисление пределов последовательностей будет во многом схоже с вычислением пределов функций. Правда, со своими особенностями.

Предел последовательности – это такой объект, к которому стремятся члены последовательности с ростом порядкового номера n.

Скажем иначе. Это число, в окрестности которого лежат все члены последовательности, начиная с некоторого.

Переменная n в последовательностях всегда стремится к бесконечности, в сторону увеличения натуральных чисел.

Что нужно помнить, вычисляя пределы последовательностей

Кстати! Также полезно помнить, что для всех наших читателей сейчас действует скидка 10% на любой вид работы.

  1. Последовательность может иметь только один предел.
  2. Если последовательность имеет предел, то она ограничена. Обратное верно не всегда!
  3. Если члены некоторой последовательности zn заключены между соответствующими членами двух последовательностей xn, yn, сходящихся к одному пределу, то и эта последовательность сходится к тому же пределу.
  4. Предел постоянной последовательности равен ее постоянному.
  5. Если две последовательности x и y равны между собой, то пределы этих последовательностей также равны между собой, если они существуют.
  6. Если каждый член сходящейся последовательности не превосходит соответствующего члена другой сходящейся последовательности, то и предел первой не превосходит предела второй.
  7. Предел суммы (разности) двух последовательностей равен сумме (разности) их пределов. При условии, что обе последовательности имеют пределы.
  8. Предел произведения двух последовательностей, имеющих пределы, существует и равен произведению пределов последовательностей.
  9. Постоянный множитель можно выносить за знак предела.
  10. Предел частного двух последовательностей, имеющих пределы, равен частному пределов этих последовательностей, если предел знаменателя не равен нулю.

Для проверки своих решений при вычислении пределов не обязательно нести работу на проверку преподавателю. Достаточно воспользоваться онлайн калькулятором.

Тема последовательностей разрабатывалась многими математиками на протяжении веков. Охватить ее в одной статье просто невозможно. Здесь мы дали лишь поверхностное представление. Если у вас есть вопросы или нужна консультация – обращайтесь к специалистам студенческого сервиса, которые помогут быстро прийти к понимаю.

Источник

Что значит последовательные числа

Одним из важнейших понятий математики является последовательность, которая составляется из точек, чисел, векторов, функций и т.д. Чаще всего разбираются числовые последовательности, их членами являются числа.

Для натуральных чисел последовательным будет число, которое на 1 больше, чем предыдущее. Например, в ряду 0 1 2 3 4 5 6 каждая последующая цифра стоит после предыдущей. Число 56789 состоит полностью из последовательных цифр, а 75429 — не состоит.

Если целое положительное число возможно записать в виде суммы 2-х и более последовательных чисел, оно называется последовательным числом.
Например, число 15 — последовательное число, т.к. его возможно записать в виде суммы двух (7+8), трех (4+5+6) и даже пяти (1+2+3+4+5) последовательных чисел. А вот у числа 16 нет ни одной суммы последовательных чисел, оно не может быть последовательным числом.

С помощью онлайн калькулятора вы сможете быстро определить сумму двух и больше последовательных целых чисел, введя значение исходного числа.

Последовательное число — целое положительное число, которое может быть представлено в виде суммы двух или более последовательных натуральных чисел. Онлайн калькулятор, который находит сумму двух или более последовательных положительных целых чисел для введенного значения.

Пример: Найдем последовательность чисел 15 и 16.
Решение: N = 15
15 является последовательным числом, его можно представить как сумму двух или более последовательных чисел.
1 + 2 + 3 + 4 + 5 = 15
4 + 5 + 6 = 15
7 + 8 = 15

15 имеет 3 суммы последовательных чисел. Так, 15 является последовательным числом.

Число 16 не имеет суммы последовательных чисел, не является последовательным числом.

Ответ или решение 1

Последовательным число можно назвать, в том случае если оно является целым и при этом его получится представить в виде суммы последовательно идущих натуральных чисел (сумма должна быть из двух или более чисел).

Для того, что бы понять является ли число последовательным, нужно подобрать подходящие последовательные натуральные числа (те которые используются при счете) и сложить их.

Пример: число 75 является последовательным.

75 можно представить и в виде других слагаемых:

37 + 38 = 75 или 10 + 11 + 12 + 13 + 14 + 15 = 75 и т. д.

Источник

Числовая последовательность

Числовой последовательностью называют ряд чисел, полученных по некоторому правилу или формуле.

Например, правило «все положительные четные числа по возрастанию начиная с двойки» задает последовательность: \(2; 4; 6; 8; 10. \) А правило «первое число равно \(3\), а каждое следующее число в два раза больше предыдущего» формирует последовательность: \(3; 6; 12; 24; 48. \)

Ниже разобраны несколько разных способов задания числовых последовательностей.

Числа, образующие последовательность, называются ее членами (или элементами). И каждое из этих чисел имеет свой порядковый номер.

Например, в последовательности \(3; 6; 12; 24; 48…\) тройка является первым членом (порядковый номер – один), шестерка – вторым (ее номер по порядку равен двум), двенадцать – третьим и т.д.

В математике последовательность обозначают маленькой латинской буквой, а каждый отдельный ее элемент – той же буквой с числовым индексом равным порядковому номеру этого элемента.

То есть, если последовательность \(3; 6; 12; 24; 48…\) обозначить как \(a_n\), то можно записать, что \(a_1=3\), \(a_2=6\), \(a_3=12\), \(a_4=24\) и так далее.

порядковый номер элемента

Отметим, что членами последовательности необязательно должны быть различные числа. Она может состоять из одних и тех же чисел, например, выглядеть вот так: \(1; \: 1; \: 1; \: 1…\) .

Способы задания числовых последовательностей

Все способы формирования числовых последовательностей можно разделить на три большие группы:

— I способ: словесный. Здесь все просто – в буквальном смысле словами описывается каким образом можно вычислить элементы искомой последовательности.

Пример: Напишите первые пять членов последовательности квадратов натуральных чисел .

Решение: Натуральными называют числа, возникающие естественным образом при счете количества предметов, то есть: \(1; \: 2; \: 3; \: 4; \: 5\) и т.д. Нашу же последовательность формируют квадраты этих чисел, то есть \(1^2;\: 2^2; \: 3^2; \: 4^2; \: 5^2…\) . Таким образом, имеем ответ: \(1; \: 4; \: 9; \: 16; \: 25…\)

Отметим, что последовательности в начале статьи заданы именно словесным способом.

— II способ: аналитический (формулой энного члена). Тут значение каждого элемента последовательности вычисляется по некоторой формуле, в которую подставляется порядковый номер этого элемента.

Пример: Последовательность задана формулой: \(b_n=\frac\). Вычислите первые пять членов этой последовательности.

Решение: Вычислим \(b_1\). Это первый член последовательности, то есть его порядковый номер \(n\) равен единице. Тогда его значение равно \(b_1=\frac<1-1> <1^2>=\frac<0><1>=0\).
У второго члена \(n=2\), то есть его значение равно \(b_2=\frac<2-1> <2^2>=\frac<1><4>\).
Третий (\(n=3\)): \(b_3=\frac<3-1> <3^2>=\frac<2><9>\).
Четвертый (\(n=4\)): \(b_4=\frac<4-1> <4^2>=\frac<3><16>\).
Пятый (\(n=5\)): \(b_5=\frac<5-1> <5^2>=\frac<4><25>\) .
Готово. Можно писать ответ.

Обратите внимание, что при таком задании последовательности, значение каждого элемента зависит только от его порядкового номера. И поэтому, если нам нужно вычислить, например, пятнадцатый элемент, мы можем это сделать сразу, не вычисляя предыдущие четырнадцать.

Пример: Последовательность задана формулой: \(a_n=8+5n-n^2\). Вычислите \(a_9\).

Решение: Нужно вычислить значение девятого элемента, то есть порядковый номер \(n=9\). Подставляем в формулу: \(a_9=8+5·9-9^2=8+45-81=-28\).

III способ: рекуррентное соотношение. Звучит страшно, но суть проста – здесь дается начало последовательности (один или несколько первых элементов) и правило, по которому из предыдущего (или нескольких предыдущих) членов последовательности можно вычислить следующий.

Пример: Последовательность задана условиями: \(c_1=4\), \(c_=c_n+3\). Вычислите первые пять членов этой последовательности.

Решение: Первый член нам известен: \(c_1=4\).
Второй мы получим, подставив в формулу вместо \(n\) единицу: \(c_<1+1>=c_1+3\)
\(c_2=c_1+3=4+3=7\)
Третий (\(n=2\)): \(c_<2+1>=c_2+3 \)
\(c_3=c_2+3=7+3=10\).

Нужные пять элементов вычислены. Теперь можно записывать ответ.

В этом примере мы по сути получали следующий элемент из предыдущего путем прибавления к предыдущему тройки. Логично, ведь формула \(c_=c_n+3\) требовала именно этого. В ней \(c_n\) – это предыдущий элемент, а \(c_\) – следующий за ним (ведь его номер на единицу больше).

На практике могут встречаться более сложные формулы, в которых следующий элемент вычисляется из двух, трех или даже большего количества предыдущих.

Пример: У последовательности известны первые два элемента \(z_1=2;\) \(z_2=5\). Так же известна формула следующего элемента \(z_=3z_-z_n\). Вычислите значения третьего, четвертого и пятого членов.

Решение: Слева будем писать текущую последовательность, а справа вести вычисления очередного элемента.

Последовательность на данный момент:

Так как формула дана для элемента с номером \(n+2\), то чтобы найти \(z_3\) нужно подставлять вместо \(n\) единицу:
\(z_<1+2>=3z_<1+1>-z_1\)
\(z_3=3z_2-z_1=3·5-2=13\)

\(z_1\) \(z_2\) \(z_3\) \(z_4\) \(z_5\) \(. \)
\(2\) \(5\) \(13\) ? ? \(. \)

Теперь найдем \(z_4\), подставив вместо \(n\) двойку:
\(z_<2+2>=3z_<2+1>-z_2\)
\(z_4=3z_3-z_2=3·13-5=34\)

\(z_1\) \(z_2\) \(z_3\) \(z_4\) \(z_5\) \(. \)
\(2\) \(5\) \(13\) \(34\) ? \(. \)
Наконец вычисляем \(z_5\), подставляя вместо \(n\) тройку:
\(z_<3+2>=3z_<3+1>-z_3\)
\(z_5=3z_4-z_3=3·34-13=89\)
\(z_1\) \(z_2\) \(z_3\) \(z_4\) \(z_5\) \(. \)
\(2\) \(5\) \(13\) \(34\) \(89\) \(. \)
Готово. Можно писать ответ.

Важное отличие рекуррентного способа задания последовательности от аналитического – при рекуррентном мы не можем посчитать следующий элемент, не зная предыдущих. То есть, если нам нужно вычислить, например, пятнадцатый элемент, придется сначала вычислить все, что идут до него.

Как определить является ли число элементом последовательности?

Во всех предыдущих примерах мы находили значения элементов последовательности – чему равен третий, пятый или девятый член. Иначе говоря, выясняли какое именно число стоит в последовательности на таком-то месте.

Но в практике встречается также обратная задача – значение известно и надо выяснить, есть ли оно среди элементов некоторой последовательности? А если есть, то на каком месте?

Пример (ОГЭ): Какое из чисел ниже есть среди членов последовательности \(a_n=n^2-n\):

Решение: Из условия задачи понятно, что одно из этих чисел точно является элементом последовательности. Поэтому мы можем просто вычислять элементы по очереди, пока не найдем нужный:

\(a_2=2^2-2=2\) – тоже не то.

Нужный элемент найден.

Такой метод решения годится только если заранее известно, что элемент точно в последовательности есть. Потому что если его вдруг там нет – это можно проверять вечность, последовательность ведь бесконечна!

Поэтому в такой ситуации пользуются следующим алгоритмом:

Подставляют заданное число в формулу \(n\) -го члена вместо \(a_n\);

Решая полученное уравнение , находят неизвестное \(n\);

Если \(n\) – натуральное , то данное число — член последовательности.

Пример: Выяснить, является ли число \(3\) членом последовательности \(a_n=\) \(\frac<51+2n>\) ?

Если число \(3\) – член последовательности, то значит при некотором значении \(n\), формула \(\frac<51+2n>\) должна дать нам тройку. Найдем это \(n\) по алгоритму выше.
Подставляем тройку вместо \(a_n\).

Решаем это уравнение. Умножаем левую и правую части на знаменатель \((n+4)\).

Источник

Оцените статью