Что значит последовательная схема

Содержание
  1. Последовательное и параллельное соединение. Применение и схемы
  2. Последовательное соединение
  3. Если воспользоваться этими правилами и законом Ома, который подходит для каждого резистора, можно доказать, что сопротивление эквивалентного общего резистора будет равно сумме сопротивлений. Следствием первых двух правил будет являться третье правило.
  4. Применение
  5. Простые последовательные схемы
  6. Использование закона Ома в последовательных цепях
  7. Использование закона Ома в простой схеме с одним резистором
  8. Использование закона Ома в схемах с несколькими резисторами
  9. Объединение нескольких резисторов в эквивалентный общий резистор
  10. Расчет тока цепи с использованием закона Ома
  11. Расчет напряжений на компонентах по закону Ома
  12. Анализ простых последовательных схем с помощью «табличного метода» и закона Ома
  13. Проверка расчетов с помощью компьютерного анализа (SPICE)

Последовательное и параллельное соединение. Применение и схемы

В электрических цепях элементы могут соединяться по различным схемам, в том числе они имеют последовательное и параллельное соединение.

Последовательное соединение

При таком соединении проводники соединяются друг с другом последовательно, то есть, начало одного проводника будет соединяться с концом другого. Основная особенность данного соединения заключается в том, что все проводники принадлежат одному проводу, нет никаких разветвлений. Через каждый из проводников будет протекать один и тот же электрический ток. Но суммарное напряжение на проводниках будет равняться вместе взятым напряжениям на каждом из них.

Рассмотрим некоторое количество резисторов, соединенных последовательно. Так как нет разветвлений, то количество проходящего заряда через один проводник, будет равно количеству заряда, прошедшего через другой проводник. Силы тока на всех проводниках будут одинаковыми. Это основная особенность данного соединения.

Это соединение можно рассмотреть иначе. Все резисторы можно заменить одним эквивалентным резистором.

Ток на эквивалентном резисторе будет совпадать с общим током, протекающим через все резисторы. Эквивалентное общее напряжение будет складываться из напряжений на каждом резисторе. Это является разностью потенциалов на резисторе.

Читайте также:  Дизайн человека определенность одинарная что это значит

Если воспользоваться этими правилами и законом Ома, который подходит для каждого резистора, можно доказать, что сопротивление эквивалентного общего резистора будет равно сумме сопротивлений. Следствием первых двух правил будет являться третье правило.

Применение

Последовательное соединение используется, когда нужно целенаправленно включать или выключать какой-либо прибор, выключатель соединяют с ним по последовательной схеме. Например, электрический звонок будет звенеть только тогда, когда он будет последовательно соединен с источником и кнопкой. Согласно первому правилу, если электрический ток отсутствует хотя бы на одном из проводников, то его не будет и на других проводниках. И наоборот, если ток имеется хотя бы на одном проводнике, то он будет и на всех других проводниках. Также работает карманный фонарик, в котором есть кнопка, батарейка и лампочка. Все эти элементы необходимо соединить последовательно, так как нужно, чтобы фонарик светил, когда будет нажата кнопка.

Иногда последовательное соединение не приводит к нужным целям. Например, в квартире, где много люстр, лампочек и других устройств, не следует все лампы и устройства соединять последовательно, так как никогда не требуется одновременно включать свет в каждой из комнат квартиры. Для этого последовательное и параллельное соединение рассматривают отдельно, и для подключения осветительных приборов в квартире применяют параллельный вид схемы.

Параллельное соединение

В этом виде схемы все проводники соединяются параллельно друг с другом. Все начала проводников объединены в одну точку, и все концы также соединены вместе. Рассмотрим некоторое количество однородных проводников (резисторов), соединенных по параллельной схеме.

Этот вид соединения является разветвленным. В каждой ветви содержится по одному резистору. Электрический ток, дойдя до точки разветвления, разделяется на каждый резистор, и будет равняться сумме токов на всех сопротивлениях. Напряжение на всех элементах, соединенных параллельно, является одинаковым.

Все резисторы можно заменить одним эквивалентным резистором. Если воспользоваться законом Ома, можно получить выражение сопротивления. Если при последовательном соединении сопротивления складывались, то при параллельном будут складываться величины обратные им, как записано в формуле выше.

Применение

Если рассматривать соединения в бытовых условиях, то в квартире лампы освещения, люстры должны быть соединены параллельно. Если их соединить последовательно, то при включении одной лампочки мы включим все остальные. При параллельном же соединении мы можем, добавляя соответствующий выключатель в каждую из ветвей, включать соответствующую лампочку по мере желания. При этом такое включение одной лампы не влияет на остальные лампы.

Все электрические бытовые устройства в квартире соединены параллельно в сеть с напряжением 220 В, и подключены к распределительному щитку. Другими словами, параллельное соединение используется при необходимости подключения электрических устройств независимо друг от друга. Последовательное и параллельное соединение имеют свои особенности. Существуют также смешанные соединения.

Работа тока

Последовательное и параллельное соединение, рассмотренное ранее, было справедливо для величин напряжения, сопротивления и силы тока, являющихся основными. Работа тока определяется по формуле:

А = I х U х t, где А – работа тока, t – время течения по проводнику.

Для определения работы при последовательной схеме соединения, необходимо заменить в первоначальном выражении напряжение. Получаем:

А=I х (U1 + U2) х t

Раскрываем скобки и получаем, что на всей схеме работа определяется суммой на каждой нагрузке.

Точно также рассматриваем параллельную схему соединения. Только меняем уже не напряжение, а силу тока. Получается результат:

А = А1+А2

Мощность тока

При рассмотрении формулы мощности участка цепи снова необходимо пользоваться формулой:

Р=U х I

После аналогичных рассуждений выходит результат, что последовательное и параллельное соединение можно определить следующей формулой мощности:

Р=Р1 + Р2

Другими словами, при любых схемах общая мощность равна сумме всех мощностей в схеме. Этим можно объяснить, что не рекомендуется включать в квартире сразу несколько мощных электрических устройств, так как проводка может не выдержать такой мощности.

Влияние схемы соединения на новогоднюю гирлянду

После перегорания одной лампы в гирлянде можно определить вид схемы соединения. Если схема последовательная, то не будет гореть ни одной лампочки, так как сгоревшая лампочка разрывает общую цепь. Чтобы выяснить, какая именно лампочка сгорела, нужно проверять все подряд. Далее, заменить неисправную лампу, гирлянда будет функционировать.

При применении параллельной схемы соединения гирлянда будет продолжать работать, даже если одна или несколько ламп сгорели, так как цепь не разорвана полностью, а только один небольшой параллельный участок. Для восстановления такой гирлянды достаточно увидеть, какие лампы не горят, и заменить их.

Последовательное и параллельное соединение для конденсаторов

При последовательной схеме возникает такая картина: заряды от положительного полюса источника питания идут только на наружные пластины крайних конденсаторов. Конденсаторы, находящиеся между ними, передают заряд по цепи. Этим объясняется появление на всех пластинах равных зарядов с разными знаками. Исходя из этого, заряд любого конденсатора, соединенного по последовательной схеме, можно выразить такой формулой:

qобщ= q1 = q2 = q3

Для определения напряжения на любом конденсаторе, необходима формула:

U= q/С

Где С — емкость. Суммарное напряжение выражается таким же законом, который подходит для сопротивлений. Поэтому получаем формулу емкости:

С= q/(U1 + U2 + U3)

Чтобы сделать эту формулу проще, можно перевернуть дроби и заменить отношение разности потенциалов к заряду емкости. В результате получаем:

1/С= 1/С1 + 1/С2 + 1/C3

Немного иначе рассчитывается параллельное соединение конденсаторов.

Общий заряд вычисляется как сумма всех зарядов, накопившихся на пластинах всех конденсаторов. А величина напряжения также вычисляется по общим законам. В связи с этим формула суммарной емкости при параллельной схеме соединения выглядит так:

С= (q1 + q2 + q3)/U

Это значение рассчитывается как сумма каждого прибора в схеме:

С=С1 + С2 + С3

Смешанное соединение проводников

В электрической схеме участки цепи могут иметь и последовательное и параллельное соединение, переплетающихся между собой. Но все законы, рассмотренные выше для отдельных видов соединений, справедливы по-прежнему, и используются по этапам.

Сначала нужно мысленно разложить схему на отдельные части. Для лучшего представления ее рисуют на бумаге. Рассмотрим наш пример по изображенной выше схеме.

Удобнее всего ее изобразить, начиная с точек Б и В. Они расставляются на некотором расстоянии между собой и от края листа бумаги. С левой стороны к точке Б подключается один провод, а справа отходят два провода. Точка В наоборот, слева имеет две ветки, а после точки отходит один провод.

Далее нужно изобразить пространство между точками. По верхнему проводнику расположены 3 сопротивления с условными значениями 2, 3, 4. Снизу будет идти ток с индексом 5. Первые 3 сопротивления включены в схему последовательно, а пятый резистор подключен параллельно.

Остальные два сопротивления (первый и шестой) подключены последовательно с рассматриваемым нами участком Б-В. Поэтому схему дополняем 2-мя прямоугольниками по сторонам от выбранных точек.

Теперь используем формулу расчета сопротивления:
  • Первая формула для последовательного вида соединения.
  • Далее, для параллельной схемы.
  • И окончательно для последовательной схемы.

Аналогичным образом можно разложить на отдельные схемы любую сложную схему, включая соединения не только проводников в виде сопротивлений, но и конденсаторов. Чтобы научиться владеть приемами расчета по разным видам схем, необходимо потренироваться на практике, выполнив несколько заданий.

Источник

Простые последовательные схемы

В данной статье мы изложим три принципа, которые необходимо понимать в отношении последовательных цепей:

  1. ток: величина тока в последовательной цепи одинакова для любого компонента в цепи;
  2. сопротивление: общее сопротивление любой последовательной цепи равно сумме отдельных сопротивлений;
  3. напряжение: напряжение питания в последовательной цепи равно сумме отдельных падений напряжения.

Давайте взглянем на несколько примеров последовательных цепей, демонстрирующих эти принципы.

Начнем с последовательной схемы, состоящей из трех резисторов и одной батареи:

Рисунок 1 – Последовательная схема с несколькими резисторами

Первый принцип, который следует понимать в отношении последовательных цепей, заключается в следующем:

Величина тока в последовательной цепи одинакова для любого компонента в цепи.

Это потому, что в последовательной цепи есть только один путь для прохождения тока. Поскольку электрический заряд проходит через проводники, как шарики в трубке, скорость потока (скорость шариков) в любой точке цепи (трубки) в любой конкретный момент времени должна быть одинаковой.

Использование закона Ома в последовательных цепях

По расположению 9-вольтовой батареи мы можем сказать, что ток в этой цепи будет течь по часовой стрелке от точки 1 к точке 2, к 3, к 4 и обратно к 1. Однако у нас есть один источник напряжения и три сопротивления. Как мы можем использовать здесь закон Ома?

Важная оговорка к закону Ома заключается в том, что все величины (напряжение, ток, сопротивление и мощность) должны относиться друг к другу с точки зрения одних и тех же двух точек в цепи. Мы можем увидеть эту концепцию в действии на примере схемы с одним резистором ниже.

Использование закона Ома в простой схеме с одним резистором

В схеме с одной батареей и одним резистором мы можем легко вычислить любой параметр, потому что все они применяются к одним и тем же двум точкам в цепи:

Рисунок 2 – Схема с одним резистором

Поскольку точки 1 и 2 соединены вместе проводом с незначительным сопротивлением, как и точки 3 и 4, мы можем сказать, что точка 1 электрически является общей с точкой 2, а точка 3 электрически общей с точкой 4. Поскольку мы знаем, что мы иметь электродвижущую силу 9 вольт между точками 1 и 4 (непосредственно на батарее), и поскольку точка 2 является общей для точки 1, а точка 3 – общей для точки 4, мы также должны иметь 9 вольт между точками 2 и 3 (непосредственно на резисторе).

Следовательно, мы можем применить закон Ома (I = E/R) к току через резистор, потому что мы знаем напряжение (E) на резисторе и сопротивление (R) этого резистора. Все параметры (E, I, R) относятся к одним и тем же двум точкам в цепи, к одному и тому же резистору, поэтому мы можем безоговорочно использовать формулу закона Ома.

Использование закона Ома в схемах с несколькими резисторами

В схемах, содержащих более одного резистора, мы должны проявлять осторожность в применении закона Ома. В приведенной ниже схеме с тремя резисторами мы знаем, что у нас есть 9 вольт между точками 1 и 4, что является величиной электродвижущей силы, управляющей током через последовательную комбинацию резисторов R1, R2 и R3. Однако чтобы попытаться найти значение тока, мы не можем взять значение 9 вольт и разделить его на 3 кОм, 10 кОм или 5 кОм, потому что мы не знаем, какое напряжение присутствует на любом из этих резисторов по отдельности.

Рисунок 3 – Последовательная цепь с несколькими резисторами

Значение 9 вольт – это общая величина для всей цепи, тогда как значения 3 кОм, 10 кОм и 5 кОм – это отдельные величины для отдельных резисторов. Если бы мы включили значение для общего напряжения в уравнение закона Ома со значением для отдельного сопротивления, результат точно не будет соответствовать какому-либо параметру в реальной цепи.

Для R1 закон Ома будет связывать величину напряжения на R1 с током через R1 при заданном сопротивлении R1, 3 кОм:

Но, поскольку нам неизвестно напряжение на R1 (только общее напряжение, подаваемое батареей на комбинацию из трех последовательных резисторов), и мы не знаем ток через R1, мы не можем производить никаких вычислений ни по одной из этих формул. То же самое касается R2 и R3: мы можем применять уравнения закона Ома тогда и только тогда, когда все члены представляют свои соответствующие величины между одними и теми же двумя точками в цепи.

Так что мы можем сделать? Нам известно напряжение источника (9 вольт), приложенное к последовательной комбинации резисторов R1, R2 и R3, и мы знаем сопротивление каждого резистора, но поскольку эти величины не находятся в одном контексте, мы не можем использовать закон Ома для определения тока в цепи. Если бы мы только знали, каково общее сопротивление цепи: тогда мы могли бы вычислить общий ток, используя наше значение для общего напряжения (I=E/R).

Объединение нескольких резисторов в эквивалентный общий резистор

Это подводит нас ко второму принципу последовательных цепей:

Общее сопротивление любой последовательной цепи равно сумме отдельных сопротивлений.

Это должно быть интуитивно понятно: чем больше последовательно соединенных резисторов, через которые должен протекать ток, тем труднее току будет протекать.

В примере у нас были последовательно соединены резисторы 3 кОм, 10 кОм и 5 кОм, что дало нам общее сопротивление 18 кОм:

\[R_ <общ>= R_1 + R_2 + R_3\]

\[R_ <общ>= 3 \ кОм + 10 \ кОм + 5 \ кОм\]

По сути, мы вычислили эквивалентное сопротивление R1, R2 и R3 вместе взятых. Зная его, мы могли бы перерисовать схему с одним эквивалентным резистором, представляющим последовательную комбинацию R1, R2 и R3:

Рисунок 4 – Эквивалентное сопротивление трех последовательно включенных резисторов

Расчет тока цепи с использованием закона Ома

Теперь у нас есть вся необходимая информация для расчета тока цепи, потому что у нас есть напряжение между точками 1 и 4 (9 вольт) и сопротивление между точками 1 и 4 (18 кОм):

Расчет напряжений на компонентах по закону Ома

Зная, что ток одинаков во всех компонентах последовательной цепи (и мы только что определили ток через батарею), мы можем вернуться к нашей исходной принципиальной схеме и отметить ток через каждый компонент:

Рисунок 5 – Расчет напряжений на компонентах

Теперь, когда мы знаем величину тока, протекающего через каждый резистор, мы можем использовать закон Ома, чтобы определить падение напряжения на каждом из них (применяя закон Ома в его надлежащем контексте):

\[E_ = I_R_1 \qquad E_ = I_R_2 \qquad E_ = I_R_3\]

\[E_ =(500 \ мкА)(3 \ кОм) = 1,5 \ В\]

\[E_ =(500 \ мкА)(10 \ кОм) = 5 \ В\]

\[E_ =(500 \ мкА)(5 \ кОм) = 2,5 \ В\]

Обратите внимание на падения напряжения на каждом резисторе, и как сумма этих падений напряжения (1,5 + 5 + 2,5) равна напряжению батареи (источника питания): 9 вольт.

Это третий принцип последовательной схемы:

Напряжение питания в последовательной цепи равно сумме отдельных падений напряжения.

Анализ простых последовательных схем с помощью «табличного метода» и закона Ома

Метод, который мы только что использовали для анализа этой простой последовательной схемы, можно упростить для лучшего понимания. Используя таблицу для перечисления всех напряжений, токов и сопротивлений в цепи, становится очень легко увидеть, какие из этих величин могут быть правильно связаны в любом уравнении закона Ома:

Рисунок 6 – Табличный метод анализа последовательных цепей

Правило с такой таблицей – применять закон Ома только к значениям в конкретном вертикальном столбце. Например, ER1 только с IR1 и R1; ER2 только с IR2 и R2; и т.д. Анализ начинается с заполнения тех элементов таблицы, которые даны нам с самого начала:

Рисунок 7 – Табличный метод. Шаг 1

Как вы можете видеть из расположения данных, мы не можем применить 9 вольт Eобщ (общее напряжение) к любому из сопротивлений (R1, R2 или R3) в любой формуле закона Ома, потому что они находятся в разных столбцах. Напряжение батареи 9 В не подается напрямую на R1, R2 или R3. Однако мы можем использовать наши «правила» последовательных цепей, чтобы заполнить пустые места в горизонтальной строке. В этом случае мы можем использовать правило последовательных сопротивлений для определения общего сопротивления из суммы отдельных сопротивлений:

Рисунок 8 – Табличный метод. Шаг 2

Теперь, введя значение общего сопротивления в крайний правый столбец («Общее»), мы можем применить закон Ома I=E/R к общему напряжению и общему сопротивлению, чтобы получить общий ток 500 мкА:

Рисунок 9 – Табличный метод. Шаг 3

Затем, зная, что ток одинаков во всех компонентах последовательной цепи (еще одно «правило» последовательной схемы), мы можем заполнить токи для каждого резистора из только что рассчитанного значения тока:

Рисунок 10 – Табличный метод. Шаг 4

Наконец, мы можем использовать закон Ома, чтобы определить падение напряжения на каждом резисторе, по столбцу за раз:

Рисунок 11 – Табличный метод. Шаг 5

Проверка расчетов с помощью компьютерного анализа (SPICE)

Ради интереса, для автоматического анализа этой схемы мы можем использовать компьютер. Это будет хороший способ проверить наши расчеты, а также познакомиться с компьютерным анализом. Во-первых, мы должны описать схему в формате, распознаваемом программным обеспечением.

Программа SPICE, которую мы будем использовать, требует, чтобы все электрически уникальные точки в цепи были пронумерованы, а размещение компонентов понималось по тому, какие из этих пронумерованных точек или «узлов» они разделяют. Для ясности я пронумеровал четыре угла схемы в нашем примере с 1 по 4. Однако SPICE требует, чтобы в схеме где-то был нулевой узел, поэтому я перерисую схему, немного изменив схему нумерации:

Рисунок 12 – Нумерация узлов схемы для SPICE

Все, что я здесь сделал, – это изменил номер нижнего левого угла схемы на 0 вместо 4. Теперь я могу ввести несколько строк текста в файл, описывающий схему в терминах, понятных SPICE, в комплекте с парой дополнительные строки кода, предписывающих программе отображать данные о напряжении и токе. Этот файл в терминологии SPICE известен как список соединений (netlist):

Теперь всё, что мне нужно сделать, это запустить программу SPICE для обработки списка соединений и вывода результатов:

Результаты моделирования в SPICE

v1 v(1,2) v(2,3) v(3) i(v1)
9.000E+00 1.500E+00 5.000E+00 2.500E+00 -5.000E-04

Эта распечатка говорит нам, что напряжение батареи составляет 9 вольт, а падение напряжения на R1, R2 и R3 составляет 1,5, 5 и 2,5 вольт соответственно. Падения напряжения на любом компоненте в SPICE обозначаются номерами узлов, между которыми находится компонент, поэтому v(1,2) относится к напряжению между узлами 1 и 2 в цепи, которые являются точками, между которыми расположен R1.

Порядок номеров узлов важен: когда SPICE выводит число для v(1,2), он учитывает полярность так же, как если бы мы держали вольтметр с красным измерительным проводом на узле 1 и черным измерительным проводом на узле. 2. У нас также есть значение, показывающее силу тока (хотя и со знаком минус) на уровне 0,5 мА или 500 мкА. Это значение отображается как отрицательное число в анализе SPICE из-за необычного способа обработки вычислений токов в SPICE. Итак, наш математический анализ был подтвержден компьютером.

Таким образом, последовательная цепь определяется как имеющая только один путь, по которому может течь ток. Из этого определения следуют три правила последовательных цепей: через все компоненты протекает одинаковый ток; общее сопротивление может быть получено путем сложения отдельных сопротивлений; а падения напряжения в сумме дают большее общее напряжение. Все эти правила выводятся из определения последовательной цепи. Если вы полностью понимаете это определение, то правила – не более чем сноски к определению.

Источник

Оцените статью