Что значит положительная дробь

Какие дроби называются обыкновенными

Что такое обыкновенная дробь — понятие и определение

Прежде чем дать определение термину «дробь», необходимо рассмотреть, чем она является в сущности.

Доля целого или доля числа — это каждая равная часть, которые вместе составляют целый предмет.

К примеру, апельсины обычно состоят из 10 одинаковых долек. А если торт разрезать пополам, то он будет состоять из двух долей.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

У каждой доли свое название, которое зависит от количества долей в предмете.

Половина — это одна вторая часть от целого. Долька апельсина — это одна десятая от апельсина. Если пиццу разрезать на шесть частей, то каждая часть равна одной шестой от всей пиццы.

Обыкновенная дробь — это такая запись числа в математике вида \(\frac mn\) , где m и n — любые натуральные числа.

Простыми словами, дробное число — это нецелое количество, часть целого, которая получается при «дроблении». «Целым» может быть что угодно: количество денег, еда, числа, делимые предметы и так далее.

Читайте также:  Что значит колледж сотрудничает с вузами

Как выглядит, примеры записи

Всего существует два вида записи дробных чисел:

  • десятичный — дробь записывается через запятую в виде 0,5; 1,25; 4,379;
  • обыкновенный — дробь вида \frac mn.

Числитель и знаменатель

Обыкновенная дробь состоит из двух натуральных чисел. Записываются они в определенном порядке. Чтобы понять этот принцип, необходимо изучение и объяснение сути дробных чисел.

В сущности, дробь — это результат деления, в котором делимое не делится на делитель полностью, без остатка. Черточка между верхней и нижней части дроби — дробная черта — равноценна знаку деления.

Числитель обыкновенной дроби вида \(\frac mn\) — это натуральное число m, равное делимому.

Знаменатель обыкновенной дроби вида \(\frac mn\) — это натуральное число n, равное делителю.

В зависимости от отношений числителя и знаменателя, выделяют 2 вида дробей.

Правильная дробь — та, у которой числитель меньше знаменателя.

Неправильная дробь — та, у которой числитель больше знаменателя или равен ему.

Обычно такие дробные числа записывают в виде целых или смешанных чисел: \(5\frac47, \ 2\frac<14><32>.\)

Знаменатель показывает, из скольких частей состоит предмет. Числитель отображает, сколько таких частей рассматривается в задаче. Например, дробь \(\frac<11><32>\) (читается «одиннадцать тридцать вторых») указывает на то, что предмет состоит из 32 долей, и для рассмотрения взяли 11 из них.

Положительные и отрицательные дроби

Дробные числа бывают не только правильными и неправильными, но также и положительными и отрицательными.

Положительная дробь \(\frac23\) и отрицательная дробь \(-\frac23\) — это противоположные числа.

Положительные дроби можно получить двумя способами:

  1. Деление положительного числа на положительное: \(3:5=\frac35.\)
  2. Деление отрицательного числа на отрицательное, т. к. при таком действии «минус» на «минус» дает «плюс»: \((-7):(-9)=\frac<-7><-9>=\frac79.\)

Отрицательные дроби также получают двумя способами:

  1. Деление положительного числа на отрицательное: \(1:(-9)=\frac1<-9>=-\frac19.\)
  2. Деление отрицательного числа на положительное: \((-6):7=\frac<-6>7=-\frac67.\)

Какие действия можно выполнять с обыкновенными дробями

Для выполнения действий с дробными числами необходимо знать их свойства.

Основное свойство дроби — если числитель и знаменатель дроби умножить или разделить на одно и то же число, получится равная ей дробь.

В общем виде это правило записывают так: \(\frac mn=\frac,\)

где a, b, k — натуральные числа.

Основных действий, которые можно выполнять с дробями, несколько.

Если у двух дробей равные знаменатели, то сравнивать необходимо только числители.

У положительных чисел чем больше числитель, тем больше число: \(\frac37>\frac17.\)

У отрицательных чисел чем меньше числитель, тем больше число, т. к. оно ближе к нулю: \(-\frac25>-\frac45.\)

Если знаменатели разные, то дроби необходимо сперва привести к общему знаменателю. Подробнее это действие рассмотрено в других статьях.

В результате сложения обыкновенных дробей получается обыкновенная дробь.

Если знаменатели одинаковые, складывать нужно только числители: \(\frac13+\frac13=\frac23.\)

Если знаменатели разные, дробь необходимо привести к общему знаменателю.

Когда в результате решения получается неправильная дробь, его необходимо привести к виду целого или смешанного числа.

Это действие обратно сложению. Правила действуют те же, что и при сложении: \(\frac7<10>-\frac2<10>=\frac5<10>=\frac12.\)

Результатом умножения двух обыкновенных дробей также всегда является обыкновенная дробь. При этом числитель умножается на числитель, а знаменатель умножается на знаменатель (отсюда следует, что знаменатели могут быть разные): \(\frac23\cdot\frac34=\frac<2\cdot3><3\cdot4>=\frac6<12>=\frac12.\)

Это действие обратно умножению. Чтобы разделить одну дробь на другую, необходимо числитель первой дроби умножить на знаменатель второй, а знаменатель первой — на числитель второй. Иными словами, вторую дробь необходимо «перевернуть» и выполнить умножение:

Источник

Большая Энциклопедия Нефти и Газа

Положительная дробь

Положительная дробь p / q называется несократимой, если числа р п q взаимно простые. [1]

Положительные дроби , отрицательные дроби и число нуль образуют множество рациональных чисел. [2]

Рассмотрим сначала положительные дроби . Изобразим последовательные знаменатели на оси д — ов, а соответствующие числители над ними — на прямой, параллельной оси у-в, так что каждая дробь изображается узлом сетки. [3]

Упорядочение положительных дробей также не требует выкладок. [4]

Поставив перед положительной дробью знак минус, получим противоположную ей — отрицательную дробь, называемую отрицательным рациональным числом. [5]

Поставив перед положительной дробью знак минус, получим противоположную ей отрицательную дробь. [6]

Если полученная величина положительная дробь , то ее округляют до большего целого, если отрицательная — до меньшего целого. [7]

Деление числителя и знаменателя положительной дроби на их общий делитель называется сокращением дроби. [8]

Положительное рациональное число называется также обыкновенной положительной дробью или просто дробью. [9]

Достаточно рассмотреть положительные рациональные числа и положительные дроби , конечные десятичные или периодические. [10]

В этом параграфе мы будем изучать положительные дроби ( положительные рациональные числа), но для краткости прилагательное положительный будем опускать, подразумевая его. [11]

Для того чтобы показать, каким образом появляются положительные дроби при решении задач измерения, мы напомним, как измеряются прямолинейные отрезки. [12]

Поскольку величина ( 1 — а) — это положительная дробь ( например, / з), то с увеличением степени ее абсолютное значение уменьшается, а большие значения степени делают ее величину близкой к нулю. Таким образом, текущие дивиденды больше зависят от величины прибыли, полученной недавно, чем за более отдаленный период времени. Поэтому уравнение может быть уточнено путем использования произвольной цифры прибыли за прошедший период. Точность приближения зависит от взятой цифры. [13]

Поскольку величина ( 1 — а) — это положительная дробь ( например, / ]), то с увеличением степени ее абсолютное значение уменьшается, а большие значения степени делают ее величину близкой к нулю. Таким образом, текущие дивиденды больше зависят от величины прибыли, полученной недавно, чем за более отдаленный период времени. Поэтому уравнение может быть уточнено путем использования произвольной цифры прибыли за прошедший период. Точность приближения зависит от взятой цифры. [14]

Следовательно, действие вычитания в множестве всех натуральных чисел и положительных дробей , вообще говоря, невыполнимо. [15]

Источник

Доли, обыкновенные дроби: определения, обозначения, примеры, действия с дробями

Рассмотрение данной темы мы начнем с изучения понятия доли в целом, которое даст нам более полное понимание смысла обыкновенной дроби. Дадим основные термины и их определение, изучим тему в геометрическом толковании, т.е. на координатной прямой, а также определим список основных действий с дробями.

Представим некий предмет, состоящий из нескольких, совершенно равных частей. Например, это может быть апельсин, состоящий из нескольких одинаковых долек.

Доля целого или доля – это каждая из равных частей, составляющих целый предмет.

Очевидно, что доли могут быть разные. Чтобы наглядно пояснить это утверждение, представим два яблока, одно из которых разрезано на две равные части, а второе – на четыре. Ясно, что размеры получившихся долей у разных яблок будут различаться.

Доли имеют свои названия, которые зависят от количества долей, составляющих целый предмет. Если предмет имеет две доли, то каждая из них будет определяться как одна вторая доля этого предмета; когда предмет состоит из трех долей, то каждая из них – одна третья и так далее.

Половина – одна вторая доля предмета.

Треть – одна третья доля предмета.

Четверть – одна четвертая доля предмета.

Чтобы сократить запись, ввели следующие обозначения долей: половина — 1 2 или 1 / 2 ; треть — 1 3 или 1 / 3 ; одна четвертая доля — 1 4 или 1 / 4 и так далее. Записи с горизонтальной чертой используются чаще.

Понятие доли естественно расширяется с предметов на величины. Так, можно использовать для измерения небольших предметов доли метра (треть или одна сотая), как одной из единиц измерения длины. Аналогичным образом можно применить доли других величин.

Обыкновенные дроби, определение и примеры

Обыкновенные дробиприменяются для описания количества долей. Рассмотрим простой пример, который приблизит нас к определению обыкновенной дроби.

Представим апельсин, состоящий из 12 долек. Каждая доля тогда будет – одна двенадцатая или 1 / 12 . Две доли – 2 / 12 ; три доли – 3 / 12 и т.д. Все 12 долей или целое число будет выглядеть так: 12 / 12 . Каждая из используемых в примере записей является примером обыкновенной дроби.

Обыкновенная дробь – это запись вида m n или m / n , где m и n являются любыми натуральными числами.

Согласно данному определению, примерами обыкновенных дробей могут быть записи: 4 / 9 , 11 34 , 917 54 . А такие записи: 11 5 , 1 , 9 4 , 3 не являются обыкновенными дробями.

Числитель и знаменатель

Числителем обыкновенной дроби m n или m / n является натуральное число m .

Знаменателем обыкновенной дроби m n или m / n является натуральное число n .

Т.е. числитель – число, расположенное сверху над чертой обыкновенной дроби (или слева от наклонной черты), а знаменатель – число, расположенное под чертой (справа от наклонной черты).

Какой же смысл несут в себе числитель и знаменатель? Знаменатель обыкновенной дроби указывает на то, из скольких долей состоит один предмет, а числитель дает нам информацию о том, каково рассматриваемое количество таких долей. К примеру, обыкновенная дробь 7 54 указывает нам на то, что некий предмет состоит из 54 долей, и для рассмотрения мы взяли 7 таких долей.

Натуральное число как дробь со знаменателем 1

Знаменатель обыкновенной дроби может быть равен единице. В таком случае возможно говорить, что рассматриваемый предмет (величина) неделим, являет собой нечто целое. Числитель в подобной дроби укажет, какое количество таких предметов взято, т.е. обыкновенная дробь вида m 1 имеет смысл натурального числа m . Это утверждение служит обоснованием равенства m 1 = m .

Запишем последнее равенство так: m = m 1 . Оно даст нам возможность любое натуральное число использовать в виде обыкновенной дроби. К примеру, число 74 – это обыкновенная дробь вида 74 1 .

Любое натуральное число m возможно записать в виде обыкновенной дроби, где знаменатель – единица: m 1 .

В свою очередь, любая обыкновенная дробь вида m 1 может быть представлена натуральным числом m .

Черта дроби как знак деления

Использованное выше представление данного предмета как n долей является не чем иным, как делением на n равных частей. Когда предмет разделен на n частей, мы имеем возможность разделить его поровну между n людьми – каждый получит свою долю.

В случае, когда мы изначально имеем m одинаковых предметов (каждый разделен на n частей), то и эти m предметов возможно поровну разделить между n людьми, дав каждому из них по одной доле от каждого из m предметов. При этом у каждого человека будет m долей 1 n , а m долей 1 n даст обыкновенную дробь m n . Следовательно, обыкновенную дробь m n можно использовать, чтобы обозначать деление m предметов между n людьми.

Полученное утверждение устанавливает связь между обыкновенными дробями и делением. И эту связь можно выразить следующим образом: черту дроби возможно иметь в виду в качестве знака деления, т.е. m / n = m : n .

При помощи обыкновенной дроби мы можем записать итог деления двух натуральных чисел. К примеру, деление 7 яблок на 10 человек запишем как 7 10 : каждому человеку достанется семь десятых долей.

Равные и неравные обыкновенные дроби

Логичным действием является сравнение обыкновенных дробей, ведь очевидно, что, к примеру, 1 8 яблока отлична от 7 8 .

Результатом сравнения обыкновенных дробей может быть: равны или неравны.

Равные обыкновенные дроби – обыкновенные дроби a b и c d , для которых справедливо равенство: a · d = b · c .

Неравные обыкновенные дроби — обыкновенные дроби a b и c d , для которых равенство: a · d = b · c не является верным.

Пример равных дробей: 1 3 и 4 12 – поскольку выполняется равенство 1 · 12 = 3 · 4 .

В случае, когда выясняется, что дроби не являются равными, обычно необходимо также узнать, какая из данных дробей меньше, а какая – больше. Чтобы дать ответ на эти вопросы, обыкновенные дроби сравнивают, приводя их к общему знаменателю и затем сравнив числители.

Дробные числа

Каждая дробь – это запись дробного числа, что по сути — просто «оболочка», визуализация смысловой нагрузки. Но все же для удобства мы объединяем понятия дроби и дробного числа, говоря просто – дробь.

Дроби на координатном луче

Все дробные числа, как и любое другое число, имеют свое уникальное месторасположение на координатном луче: существует однозначное соответствие между дробями и точками координатного луча.

Чтобы на координатном луче найти точку, обозначающую дробь m n , необходимо от начала координат отложить в положительном направлении m отрезков, длина каждого из которых составит 1 n долю единичного отрезка. Отрезки можно получить, разделив единичный отрезок на n одинаковых частей.

Как пример, обозначим на координатном луче точку М , которая соответствует дроби 14 10 . Длина отрезка, концами которого является точка О и ближайшая точка, отмеченная маленьким штрихом, равна 1 10 доле единичного отрезка. Точка, соответствующая дроби 14 10 , расположена в удалении от начала координат на расстояние 14 таких отрезков.

Если дроби равны, т.е. им соответствует одно и то же дробное число, тогда эти дроби служат координатами одной и той же точки на координатном луче. К примеру, координатам в виде равных дробей 1 3 , 2 6 , 3 9 , 5 15 , 11 33 соответствует одна и та же точка на координатном луче, располагающаяся на расстоянии трети единичного отрезка, отложенного от начала отсчета в положительном направлении.

Здесь работает тот же принцип, что и с целыми числами: на горизонтальном, направленном вправо координатном луче точка, которой соответствует большая дробь, разместится правее точки, которой соответствует меньшая дробь. И наоборот: точка, координата которой – меньшая дробь, будет располагаться левее точки, которой соответствует бОльшая координата.

Правильные и неправильные дроби, определения, примеры

В основе разделения дробей на правильные и неправильные лежит сравнение числителя и знаменателя в пределах одной дроби.

Правильная дробь – это обыкновенная дробь, в которой числитель меньше, чем знаменатель. Т.е., если выполняется неравенство m n , то обыкновенная дробь m n является правильной.

Неправильная дробь — это обыкновенная дробь, числитель которой больше или равен знаменателю. Т.е., если выполняется неравенство undefined , то обыкновенная дробь m n является неправильной.

Источник

Оцените статью