Что значит показательная функция

Что значит показательная функция

Показательной функцией назыввается функция вида y = a x , где a > 0 и a ≠ 1.

График функции имеет следующий вид:

Рассмотрим свойства функции:

  1. Областью определения функции является множество всех действительных чисел R.
  2. Множеством значений функции являются все положительные числа, т. е. промежуток E(y): (0; +∞).
  3. Наименьшего и наибольшего значений функция не имеет.
  4. Функция не является ни нечетной, ни четной. Имеет общий вид.
  5. Функция непериодическая.
  6. График функции пересекает координатную ось Oy в точке (0; 1).
  7. Функция не имеет нулей.
  8. при a > 1 функция возрастает на всей числовой прямой; при 0
  9. Функция принимает положительные значения на всей области определения.

Примеры решения задач

Задача 1.

В одной координатной плоскости построить графики функций:

Решение.

Для начала построим график функции y=2 x . Для этого найдем значения функции при x = 0, ±1, ±2, ±3.

x -3 -2 -1 0 1 2 3
y(x) 1 2 4 8

Отметим полученные точки на координатной плоскости, соединив их плавной линией.

Большему значению аргумента х соответствует и большее значение функции у. Функция y = 2 x возрастает на всей области определения D(y)=R, так как основание функции 2 > 1.

Подобным образом построим графики остальных функций.

Переменная х может принимать любое значение (D (y)=R), при этом значение у всегда будет больше нуля (E (y)=R+).

Графики всех данных функций пересекают ось Оу в точке (0; 1), так как любое число в нулевой степени равно единице; с осью Ох графики не пересекаются, так как положительное число в любой степени не может быть равным нулю. Чем больше основание a (если a>1) показательной функции y = a x , тем ближе расположена кривая к оси Оу.

Все данные функции являются возрастающими, так как большему значению аргумента соответствует и большее значение функции.

Задача 2.

В одной координатной плоскости построить графики функций:

Решение.

Для начала построим график функции . Для этого найдем значения функции при x = 0, ±1, ±2, ±3.

x -3 -2 -1 0 1 2 3
y(x) 8 4 2 1

Отметим полученные точки на координатной плоскости, соединив их плавной линией.

Большему значению аргумента х соответствует меньшее значение функции y. Функция убывает на всей своей области определения: D(y)=R, так как основание функции 0

Подобным образом построим графики остальных функций.

Переменная х может принимать любое значение: D(y)=R, при этом область значений функции: E(y)=R+.

Графики всех данных функций пересекают ось Оу в точке (0; 1), так как любое число в нулевой степени равно единице; с осью Ох графики не пересекаются, так как положительное число в любой степени не может быть равным нулю.

Чем меньше основание а (при 0 x , тем ближе расположена кривая к оси Оу.

Все эти функции являются убывающими, так как большему значению аргумента соответствует меньшее значение функции.

Задание 3.

Найти область значений функции:

  1. y = -2 x
  2. y = +1
  3. y = 3 x+1 — 5

Решение.

Область значений показательной функции y = 2 x – все положительные числа, т. е. 0 x x

2. y = +1

0 . Тогда, прибавляя ко всем частям двойного неравенства число 1, получаем:

Запишем функцию ввиде: y = 3·3 x — 5, тогда:

умножаем все части двойного неравенства на 3:

из всех частей двойного неравенства вычитаем 5:

Источник

Алгебра и начала математического анализа. 10 класс

Конспект урока

Алгебра и начала математического анализа, 10 класс

Урок №21. Показательная функция.

Перечень вопросов, рассматриваемых в теме:

— какая функция называется показательной;

— какие свойства имеет показательная функция в зависимости от ее основания;

— какой вид имеет график показательной функции в зависимости от ее основания;

— примеры реальных процессов, описываемых показательной функцией.

Глоссарий по теме

Функция вида , a>0, а≠1 называется показательной функцией с основанием а.

Функция называется монотонно убывающей на промежутке , если (чем больше аргумент, тем меньше значение функции).

Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е., Шабунин М.И. под ред. Жижченко А.Б. Алгебра и начала математического анализа. 10 класс: учеб.для общеобразоват. учреждений: базовый и профил. уровни 2-е изд. – М.: Просвещение, 2010. – 336 с.: ил. – ISBN 978-5-09-025401-4, сс.310-314, сс. 210-216.

Открытые электронные ресурсы:

http://fcior.edu.ru/ — Федеральный центр информационно-образовательных ресурсов

http://school-collection.edu.ru/ — Единая коллекция цифровых образовательных ресурсов

Теоретический материал для самостоятельного изучения

1. Определение, свойства и график показательной функции

Функция вида y=а х , a>0, а≠1 называется показательной функцией с основанием а.

Такое название она получила потому, что независимая переменная стоит в показателе. Основание а – заданное число.

Для положительного основания значение степени а х можно найти для любого значения показателя х – и целого, и рационального, и иррационального, то есть для любого действительного значения.

Сформулируем основные свойства показательной функции.

1. Область определения.

Как мы уже сказали, степень а х для a>0 определена для любого действительного значения переменной х, поэтому область определения показательной функции D(y)=R.

2. Множество значений.

Так как основание степени положительно, то очевидно, что функция может принимать только положительные значения.

Множество значений показательной функции Е(y)=R + , или Е(y)=(0; +∞).

3. Корни (нули) функции.

Так как основание a>0, то ни при каких значениях переменной х функция не обращается в 0 и корней не имеет.

При a>1 функция монотонно возрастает.

6. График функции.

Рисунок 1 – График показательной функции при a>1

При 0 1 при х стремящемся к минус бесконечности.

2. Рассмотрим пример исследования функции y=–3 х +1.

1) Область определения функции любое действительное число.

2) Найдем множество значений функции.

Так как 3 х >0, то –3 х х +1 х +1 представляет собой промежуток (-∞; 1).

3) Так как функция y=3 х монотонно возрастает, то функция y=–3 х монотонно убывает. Значит, и функция y=–3 х +1 также монотонно убывает.

4) Эта функция будет иметь корень: –3 х +1=0, 3 х =1, х=0.

5) График функции

Рисунок 3 – График функции y=–3 х +1

6) Для этой функции горизонтальной асимптотой будет прямая y=1.

3. Примеры процессов, которые описываются показательной функцией.

1) Рост различных микроорганизмов, бактерий, дрожжей и ферментов описывает формула: N= N0·a kt , N– число организмов в момент времени t, t – время размножения, a и k – некоторые постоянные, которые зависят от температуры размножения, видов бактерий. Вообще это закон размножения при благоприятных условиях (отсутствие врагов, наличие необходимого количества питательных веществ и т.п.). Очевидно, что в реальности такого не происходит.

2) Давление воздуха изменяется по закону: P=P0·a -kh , P– давление на высоте h, P0 – давление на уровне моря, h – высота над уровнем моря, a и k – некоторые постоянные.

3) Закон роста древесины: D=D0·a kt , D– изменение количества древесины во времени, D0 – начальное количество древесины, t – время, a и k – некоторые постоянные.

4) Процесс изменения температуры чайника при кипении описывается формулой: T=T0+(100– T0)e -kt .

5) Закон поглощения света средой: I=I0·e -ks , s– толщина слоя, k – коэффициент, который характеризует степень замутнения среды.

6) Известно утверждение, что количество информации удваивается каждые 10 лет. Изобразим это наглядно.

Примем количество информации в момент времени t=0 за единицу. Тогда через 10 лет количество информации удвоится и будет равно 2. Еще через 10 лет количество информации удвоится еще раз и станет равно 4 и т.д.

Если предположить, что поток информации изменялся по тому же закону до того года, который принят за начальный, то будем двигаться по оси абсцисс влево от начала координат и над значениями аргумента -10, -20 и т.д. будем наносить на график значения функции уже в порядке убывания — уменьшая каждый раз вдвое.

Рисунок 4 – График функции y=2 х – изменение количества информации

Закон изменения количества информации описывается показательной функцией y=2 х .

Примеры и разбор решения заданий тренировочного модуля

Выберите показательные функции, которые являются монотонно убывающими.

  1. y=3 x-1
  2. y=(0,4) x+1
  3. y=(0,7) -х
  4. y=
  5. y=3 -2х
  6. y=10 2x +1

Монотонно убывающими являются показательные функции, основание которых положительно и меньше единицы. Такими функциями являются: 2) и 4) (независимо от того, что коэффициент в показателе функции 4) равен 0,5), заметим, что функцию 4) можно переписать в виде: , используя свойство степеней.

Также монотонно убывающей будет функция 5). Воспользуемся свойством степеней и представим ее в виде:

2) 4) 5)

Найдите множество значений функции y=3 x+1 – 3.

Так как 3 x+1 >0, то 3 x+1 – 3>–3, то есть множество значений:

Найдите множество значений функции y=|2 x – 2|

2 x –2>–2, но, так как мы рассматриваем модуль этого выражения, то получаем: |2 x – 2|0.

Источник

Читайте также:  Что значит мини каско
Оцените статью