Что значит планета с греческого

Содержание
  1. Значение слова «планета»
  2. плане́та
  3. планета
  4. См. также в других словарях:
  5. Планета
  6. Содержание
  7. Планетные системы
  8. Состав планетных систем
  9. Объекты планетарной массы
  10. Планета-сирота
  11. Субкоричневые карлики
  12. Планеты-спутники и планеты поясов
  13. Движение планет по орбите
  14. Наклон оси
  15. Вращение
  16. «Чистая орбита»
  17. Эволюция планетных систем
  18. Солнечная система
  19. Процессы
  20. Формирование планеты
  21. Аккреционный сценарий
  22. Трудности аккреционного сценария
  23. Сценарий гравитационного коллапса
  24. Трудности сценария гравитационного коллапса
  25. Эволюция
  26. Структурообразующие
  27. Процессы магнитного поля
  28. Атмосферные
  29. Наблюдения и их особенности
  30. Транзитный метод
  31. Метод лучевых скоростей
  32. Физические характеристики
  33. Масса
  34. Внутренняя дифференциация
  35. Вторичные характеристики
  36. История
  37. Вавилон
  38. Древняя Греция и Древний Рим
  39. Древняя и средневековая Индия
  40. Исламский мир
  41. Европейское Возрождение
  42. XIX век
  43. XX век
  44. XXI век
  45. Определение экзопланеты

Значение слова «планета»

1. Большое небесное тело, движущееся вокруг Солнца и светящееся отраженным солнечным светом. Большие планеты. Малые планеты.Если бы солнце перестало согревать и освещать землю, то наша планета в самое короткое время превратилась бы в ледяную глыбу. Писарев, Физиологические картины. 2 января 1959 в Советском Союзе был дан старт космической ракете, которая впервые в истории человечества — стала новой искусственной планетой солнечной системы. Р. Перельман, Звездные корабли. || Земля. На всей планете, товарищи люди, объявите: войны не будет! Маяковский, Долой! Мы — патриоты! Честная дружба, которою отныне будет жить планета, создается сегодня — на полях совместного боя. Леонов, Неизвестному американскому другу.

2. перен. Устар. Судьба, участь. — Славная была женщина, и посейчас жалко мне ее… Кабы не моя планета — не ушел бы я от нее, пока она сама того не захотела бы. М. Горький, Коновалов.

[От греч. πλανήτης — блуждающий]

Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека

  • Плане́та (греч. πλανήτης, альтернати́вная фо́рма др.-греч. πλάνης — «странник») — это небесное тело, вращающееся по орбите вокруг звезды или её остатков, достаточно массивное, чтобы стать округлым под действием собственной гравитации, но недостаточно массивное для начала термоядерной реакции, и сумевшее очистить окрестности своей орбиты от планетезималей[a].
Читайте также:  Что значит тату улетающие птицы

Термин «планета» — древний и имеет связи с историей, наукой, мифологией и религией. Во многих ранних культурах планеты рассматривались как носители божественного начала или, по крайней мере, статуса божественных эмиссаров. По мере развития науки представления о планетах менялись в немалой степени и благодаря открытию новых объектов и обнаружению различий между ними.

В понимании учёных птолемеевской эпохи планеты вращались вокруг Земли по идеально круглым орбитам. Идея обратного — что на самом деле Земля подобно другим планетам вращается вокруг Солнца — выдвигалась не раз, но лишь в XVII столетии она была обоснована результатами наблюдений, с помощью первых построенных человеком телескопов, сделанных Галилео Галилеем. Благодаря тщательному анализу данных Иоганн Кеплер обнаружил, что орбиты планет не круглые, а эллиптические. Поскольку инструменты наблюдений улучшались, астрономы установили, что, как и Земля, планеты вращаются вокруг наклонённой к плоскости своей орбиты оси и обладают такими особенностями, свойственными Земле, как полярные шапки из льда и смена сезонов. С рассветом космической эры близкие наблюдения позволили обнаружить и на других планетах Солнечной системы вулканическую деятельность, тектонические процессы, ураганы и даже присутствие воды.

Планеты можно поделить на два основных класса: большие, имеющие невысокую плотность планеты-гиганты, и менее крупные землеподобные планеты, имеющие твёрдую поверхность. Согласно определению Международного астрономического союза, в Солнечной системе 8 планет. В порядке удаления от Солнца — четыре землеподобных: Меркурий, Венера, Земля, Марс, затем четыре планеты-гиганта: Юпитер, Сатурн, Уран и Нептун. В Солнечной системе также есть по крайней мере 5 карликовых планет: Плутон (до 2006 года считавшийся девятой планетой), Макемаке, Хаумеа, Эрида и Церера. За исключением Меркурия и Венеры, вокруг всех планет обращается хотя бы по одному спутнику.

Начиная с 1992 года, с открытием сотен планет вокруг других звёзд, названных экзопланетами, стало понятным, что планеты можно обнаружить в Галактике везде, и они имеют много общего с планетами Солнечной системы. В 2006 году Международный астрономический союз дал новое определение планеты, что вызвало как одобрение, так и критику со стороны учёного сообщества, продолжаемую некоторыми учёными до сих пор.

На 20 января 2016 года достоверно подтверждено существование 2049 экзопланет в 1297 планетных системах, из которых в 507 имеется более одной планеты. Размеры экзопланет лежат в пределах от размеров планет земной группы до более крупных, чем планеты-гиганты

ПЛАНЕ’ТА, ы, ж. [от греч. planētēs — блуждающий]. 1. Небесное тело, вращающееся вокруг солнца и получающее от него свет и тепло (астр.). Большие планеты (Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон). Малые планеты. Чистым

сияньем сверкают планеты.

Брюсов. 2. перен. Чья-н. судьба, участь (разг. устар.). Как бы не моя планета — не ушел бы я от нее, пока она сама того не захотела бы. М. Горький.

Источник: «Толковый словарь русского языка» под редакцией Д. Н. Ушакова (1935-1940); (электронная версия): Фундаментальная электронная библиотека

плане́та

1. астрон. небесное тело, находящееся на орбите вокруг звезды, имеющее массу, достаточную для принятия им гидростатически равновесой (округлой) формы, но недостаточную для начала термоядерного синтеза, и очистившее окрестности своей орбиты от планетезималей ◆ А далеко за последней планетой нашей системы, в бездонных глубинах небесного пространства, горят и светят другие раскаленные солнца — звёзды. Я. И. Перельман, «Далекие миры», 1914 г. (цитата из НКРЯ) ◆ Не отрываясь от своей планеты, люди ухитрились узнать, из чего состоит Солнце. М. П. Бронштейн, «Солнечное вещество», 1936 г. (цитата из НКРЯ)

2. то же, что Земля; весь мир ◆ Стало быть, самые законы планеты ложь и диаволов водевиль Достоевский, «Бесы», 1871—1872 г. ◆ Они, наконец, осознали, что мир, планета и её ресурсы ограничены Борис Ключников, «Тесные врата устойчивого развития», 2004 г. // «Наш современник» (цитата из НКРЯ)

3. перен. место обитания; место происхождения; родина ◆ Ещё вверх — ещё свежее стало, начинается нетающий иней; тут рубеж, тут ничего не бывает, дальше ходит только любопытнейший из всех зверей, чтоб на минуту заглянуть в эти степи пустоты, посмотреть на эти пограничные, выдавшиеся пределы планеты, и скорее спуститься в свою среду, исполненную сует, — но где он дома. Герцен, «Былое и думы», 1862—1866 г. ◆ — Значит, ты тоже явился с неба. А с какой планеты? Антуан де Сент-Экзюпери, «Маленький принц» / перевод Нора Галь, 1943 г. (цитата из Библиотеки Максима Мошкова) ◆ «Колыма, чудная планета» — там из ватников и ночью не вылезают, потому что спят зимой в палатках Ю. О. Домбровский, «Факультет ненужных вещей», 1978 г. ◆ Плотный заряд пахучего воздуха с далёкой хвойной планеты пролетел по шестому тоннелю. Василий Аксенов, «Романтик Китоусов, академик Великий-Салазкин и таинственная Маргарита», 1973 г. // «Литературная газета» (цитата из НКРЯ)

4. перен. область исследования, интересов; мир чего-либо или кого-либо ◆ — Что говорить: человек просвещённого ума! — Во все планеты посвящён! — Химик настоящий! В. И. Немирович-Данченко, «Соловки», 1874 г. (цитата из НКРЯ) ◆ На планете философии все земли давно открыты! Александр Солженицын, «В круге первом», 1968 г. (цитата из НКРЯ) ◆ Слава и Галина — целая планета, и мне посчастливилось на ней бывать. Сати Спивакова, «Не всё», 2002 г. (цитата из НКРЯ) ◆ Что мы, новые американцы, пришельцы с планеты «Совок», делаем, едва оглядевшись и переведя дух? Лидия Шодхина, «О куроводе замолвите слово…», 2003 г. // «Вестник США» (цитата из НКРЯ)

5. перен. астрол. то же, что судьба ◆ Это была моя судьба, несчастная планета, загнавшая меня в Соляную контору в этот мрачный и тесный промежуток службы моей, которая никогда так удручена не была ещё. И. М. Долгоруков, «Повесть о рождении моем, происхождении и всей моей жизни, писанная мной самим и начатая в Москве, 1788-го года в августе месяце, на 25-ом году моей жизни», 1788—182 г. (цитата из НКРЯ)

Источник

планета

1 Αρης

θοῦρος и θοός «стремительный, неистовый, яростный», ἀνδροφόνος и βροτολοιγός «человекоубийственный», ἀΐδηλος «разрушительный, истребляющий», τειχεσιπλήτης «сокрушитель стен», μιαίφονος «обагренный кровью», πελώριος «исполинский», οὖος «губительный», ῥινοτόρος «пронзающий щиты», ταλαύρινος «щитоносный», βριήπυος «рыкающий», ἀλλοπρόσαλλος «переменчивый», λαόσσοος «подстрекающий людей (к войне)», χρυσήνιος «блистающий золотом» и др.:

(Ἄ. ἔνεστιν ἔν τινι Soph. )

(Ἄ. ἄχαλκος ἀσπίδων Soph. )

(ὅ ἀστέρ ὅ Ἄρεος Arst. )

2 αστρον

(ἥλιος, σελήνη καὴ πέντε ἄλλα ἄστρα Plat. )

3 Αφροδιτη

Ἀφροδίτης κᾶπος Pind. — сад Афродиты, т.е. область Кирены

4 γη

(γῆ τε καὴ ἥλιος Hom. ; πότερον ἥ γῆ πλατεῖά ἐστιν ἢ στρογγύλη Plat. ; οὐρανῷ μιγνύειν γῆν Plut. )

ποῦ γῆς ; Soph. — в каком месте света?, где именно?;

(ἥ γῆ ἥ Ὀλυμπία Plut. )

(ὅ θανὼν γᾶ καὴ οὐδὲν ὢν κείσεται ταλας Soph. ; τὰ ἐπί τοῖς οὐρανοῖς καὴ τὰ ἐπὴ τῆς γῆς NT. )

5 Ερμης

6 εσπερος

ποτὴ ἕσπερον Hes. — к вечеру, под вечер

7 εωσφορος

( у Hom. трехсложно ) утренняя звезда, т.е. планета Венера Hes. , Plat. , Plut.

8 Ζευς

9 Κρονικος

ἡ Κρονικέ ἑορτή Plut. — Сатурналии;

10 Κρονος

11 πλανης

12 πυροεις

13 σφαιρα

( Plat. , Anth. ; σφαίρῃ παίζειν Hom. )

14 φωσφορος

15 πλανήτης

16 γῆ

17 πλανάομαι

18 φῶς

19 1093

20 γῆ

См. также в других словарях:

Планета Х — (англ. Planet X) предполагаемая, не обнаруженная до настоящего времени, крупная планета на границе Солнечной системы. Планета Х обобщающее название, часто вместо него упоминаются: Тюхе, Нибиру и даже погасшая звезда Немезида. В… … Википедия

Планета 46 — Планета 46 … Википедия

Планета-51 — Planet 51 Жанр Фантастика Режиссёр Хорхе Бланко, Хавьер Абад, Маркос Мартинез Продюсер Томас Д. Адельман, Гай Коллинз, Игнасио Перес Дольсет … Википедия

ПЛАНЕТА — (лат., от греч. planetes блуждающая). Небесное тело, обращающееся вокруг солнца по эллипсу. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ПЛАНЕТА лат. planeta, от греч. planetes, блуждающий, от planao, блуждаю.… … Словарь иностранных слов русского языка

планета — мир, свет, вселенная, земля; судьба, подлунная, доля, часть, участь, планетоид, астероид Словарь русских синонимов. планета см. судьба 2 Словарь синонимов русского языка. Практический справочник. М.: Русский язык. З. Е. Александрова … Словарь синонимов

ПЛАНЕТА — ПЛАНЕТА, планеты, жен. (от греч. planetes блуждающий). 1. Небесное тело, вращающееся вокруг солнца и получающее от него свет и тепло (астр.). Большие планеты (Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон). Малые планеты.… … Толковый словарь Ушакова

ПЛАНЕТА — ПЛАНЕТА, массивное, не звездообразное тело, вращающееся вокруг звезды и светящееся только за счет отражения света этой звезды. В СОЛНЕЧНОЙ СИСТЕМЕ существует девять основных планет, в противоположность тысячам мелких небесных тел, известных, как… … Научно-технический энциклопедический словарь

ПЛАНЕТА — ПЛАНЕТА, ы, жен. Небесное тело, движущееся вокруг Солнца и светящееся его отражённым светом. П. Земля. | прил. планетный, ая, ое и планетарный, ая, ое. Планетное ядро. Планетарные туманности. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова.… … Толковый словарь Ожегова

ПЛАНЕТА — жен. небесное, темное тело, земля, один из земных шаров вселенной, обтекающих солнце. Мы отличаем в телах вселенной: солнца (наше, и неподвижные звезды), планеты, кометы и спутников. Главных планет известно восемь: Меркурий, Венера, Земля, Марс,… … Толковый словарь Даля

планета — Одно из небесных тел, включая Землю, обращающееся вокруг Солнца по эллиптической орбите и светящееся отраженным светом … Словарь по географии

Планета — У этого термина существуют и другие значения, см. Планета (значения) … Википедия

Источник

Планета

Планета (греч. πλανήτης , альтернативная форма др.-греч. πλάνης — «странник») — это небесное тело, вращающееся по орбите вокруг звезды или её остатков, достаточно массивное, чтобы стать округлым под действием собственной гравитации, но недостаточно массивное для начала термоядерной реакции, и сумевшее очистить окрестности своей орбиты от планетезималей [a] [1] [2] .

Термин «планета» — древний и имеет связи с историей, наукой, мифологией и религией. В текстах на русском языке встречается с XI века, когда это название в форме «планита» было упомянуто в «Изборнике Святослава» 1073 года, где также были указаны небесные тела, подходившие к тому времени под это определение: Слъньце (Солнце), Ермис (Меркурий), Афродити (Венера), Луна, Арис (Марс), Зеус (Юпитер), Кронос (Сатурн) [3] . Во многих ранних культурах планеты рассматривались как носители божественного начала или, по крайней мере, статуса божественных эмиссаров. По мере того, как научные знания развивались, человеческое восприятие планет изменилось в немалой степени и благодаря открытию новых объектов и обнаружению различий между ними.

В понимании учёных птолемеевской эпохи планеты вращались вокруг Земли по идеально круглым орбитам. Несмотря на то, что идея обратного — что на самом деле Земля подобно другим планетам вращается вокруг Солнца — выдвигалась не один раз, лишь в XVII столетии она была обоснована результатами наблюдений, с помощью первых построенных человеком телескопов, сделанных Галилео Галилеем. Благодаря тщательному анализу данных Иоганн Кеплер обнаружил, что орбиты планет не круглые, а эллиптические. Поскольку инструменты наблюдений улучшались, астрономы установили, что, как и Земля, планеты вращаются вокруг наклонённой к плоскости эклиптики оси и обладают такими особенностями, свойственными Земле, как полярные шапки из льда и смена сезонов. С рассветом космической эры близкие наблюдения позволили обнаружить и на других планетах Солнечной системы вулканическую деятельность, тектонические процессы, ураганы и даже присутствие воды.

Планеты можно поделить на два основных класса: большие, имеющие невысокую плотность планеты-гиганты, и менее крупные землеподобные планеты, имеющие твёрдую поверхность. Согласно определению Международного астрономического союза, в Солнечной системе 8 планет. В порядке удаления от Солнца — четыре землеподобных: Меркурий, Венера, Земля, Марс, затем четыре планеты-гиганта: Юпитер, Сатурн, Уран и Нептун. В Солнечной системе также есть по крайней мере 5 карликовых планет: Плутон (до 2006 года считавшийся девятой планетой), Макемаке, Хаумеа, Эрида и Церера. За исключением Меркурия и Венеры, вокруг всех планет обращается хотя бы по одному спутнику.

Начиная с 1992 года, с открытием сотен планет вокруг других звёзд, названных экзопланетами, учёные начали понимать, что планеты можно обнаружить в Галактике везде и многие их характеристики схожи с аналогичными особенностями планет Солнечной системы. В 2006 году Международный астрономический союз в своём решении дал новое определение планеты, что вызвало как одобрение, так и критику со стороны учёного сообщества, продолжаемую некоторыми учёными до сих пор. На октябрь 2012 года известно уже 843 экзопланеты в 665 планетных системах (в том числе 126 мульти-планетных), в пределах от планет-гигантов до планет земной группы [4] .

Содержание

Планетные системы

Состав планетных систем

Первое подтверждённое открытие экзопланеты на орбите вокруг звезды главной последовательности произошло 6 октября 1995 года, когда Мишель Мейор и Дидье Кьело из Женевского университета объявили об обнаружении планеты около 51 Пегаса. Из более чем 500 известных экзопланет, большинство обладают массой, сопоставимой или много раз большей, чем у Юпитера, хотя известны и менее крупные [5] . Наименьшие из открытых экзопланет до настоящего времени были обнаружены у остатка звезды, известного как пульсар, под обозначением PSR 1257+12 [6] . Известна, по крайней мере, дюжина экзопланет между 10 и 20 земными массами [5] , как, например, те, что вращаются вокруг Мю Жертвенника, 55 Рака и GJ 436 [7] . Эти планеты иногда называют «нептуны», потому что по своей массе они близки к Нептуну (17 земных) [8] . Другая категория экзопланет называется «сверхземлями», возможно, землеподобные миры, более крупные, чем Земля, но меньшие, чем Уран или Нептун. На настоящий момент известно примерно 20 возможных сверхземель и в их числе: Глизе 876 d (примерно 6 масс Земли) [9] , OGLE-2005-BLG-390L b и MOA-2007-BLG-192L b, холодные, ледяные миры, обнаруженные при помощи гравитационного микролинзирования [10] [11] , COROT-7b, с диаметром около 1,7 земных (что делает её самой маленькой известной сверхземлёй из найденных), но с орбитальным расстоянием в 0,02 а. е., что, вероятно, означает наличие расплавленной поверхности с температурой около 1000—1500 °C [12] , и пять из шести планет на орбите вокруг соседнего красного карлика Глизе 581. Экзопланета Глизе 581 d примерно в 7,7 раз массивнее Земли [13] , тогда как Глизе 581 c массивнее Земли в 5 раз, и, как первоначально думали, мог быть первой землеподобной экзопланетой, расположенной в так называемой «обитаемой зоне» около звезды [14] . Однако, более детальные наблюдения позволили установить, что планета слишком близка к звезде, чтобы быть пригодной для жизни, и самая дальняя планета в системе, Глизе 581 d, хотя и много холоднее Земли, могла бы быть потенциально пригодной для жизни при наличии в атмосфере достаточного количества парниковых газов [15] .

До сих пор не до конца ясно, напоминают ли открытые экзопланеты газовые гиганты и планеты земной группы Солнечной системы, или же они не совсем похожи, и некоторые из них относятся к доселе теоретическим типам, как, например, аммиачные гиганты или углеродные планеты. В частности, множество недавно открытых экзопланет, известных как горячие юпитеры, обращаются экстремально близко к материнским звёздам, по почти круговым орбитам. Поэтому они получают значительно больше звёздной радиации, чем газовые гиганты в Солнечной системе, что ставит под вопрос, являются ли они одним и тем же типом планет. Существует также подкласс горячих юпитеров, называемый хтонические планеты, обращавшиеся на орбите вокруг материнских звёзд так близко, что звёздная радиация сдула их атмосферу. Несмотря на то, что немало горячих юпитеров находятся в процессе потери атмосферы, до сих пор подтверждённых хтонических планет обнаружено не было [16] .

Более подробные данные наблюдений за экзопланетами требуют нового поколения инструментов, включая космические телескопы. В настоящее время COROT ищет экзопланеты на основании наблюдений за изменениями яркости у звёзд вызванного прохождениями экзопланет. Множество проектов в последнее время предполагают создание космических телескопов для поиска экзопланет, сопоставимых по размерам и массе с Землёй. Первый из них уже реализован NASA: Кеплер — первый телескоп созданный специализировано для этих целей. Пока не имеют точной даты реализации проекты Terrestrial Planet Finder, Space Interferometry Mission и НЦКИ (Франция) — PEGASE. New Worlds Mission может работать заодно с «Джеймсом Веббом». Однако программа финансирования многих из этих проектов пока не утверждена. В 2007 году был получен первый спектральный анализ экзопланет (HD 209458 b и HD 189733 b) [17] [18] . Наличие достаточного количества землеподобных планет является важной составной частью уравнения Дрейка, которое может позволить оценить число разумных коммуникативных цивилизаций, которые существуют в нашей галактике [19] .

Объекты планетарной массы

Объект планетарной массы, ОПМ или Планемо — это небесное тело, чья масса позволяет ему попадать в диапазон определения планеты, то есть его масса больше, чем у малых тел, но недостаточна для начала термоядерной реакции по образу и подобию коричневого карлика или звезды. По определению все планеты — объекты планетарной массы, но цель этого термина в том, чтобы описать небесные тела, не соответствующие тому, что типично ожидается от планеты. Например, планеты в «свободном плавании», не обращающиеся вокруг звезд, которые могут быть «планетами-сиротами», покинувшими свою систему, или объекты, появившиеся в ходе коллапса газового облака — вместо типичной для большинства планет аккреции из протопланетного диска (их обычно называют субкоричневыми карликами).

Планета-сирота

Некоторые компьютерные модели формирования звёзд и планетарных систем предполагают, что определённые «объекты планетарной массы» могут покинуть свою систему и уйти в межзвёздное пространство [20] . Некоторые учёные утверждали, что такие объекты уже нашли свободно блуждающими в космосе и их следует классифицировать как планеты, хотя другие предположили, что они могут быть и мало-массивными звёздами [21] [22] .

Субкоричневые карлики

Звёзды могут образовываться посредством гравитационного коллапса газового облака, но меньшие объекты также могут сформироваться таким способом. Объекты планетарной массы, образовавшиеся таким способом, называют субкоричневыми карликами. Субкоричневые карлики могут находиться в «свободном плавании», как, возможно, Cha 110913-773444, или на орбите вокруг более крупного объекта, как, возможно, 2MASS J04414489+2301513.

В течение короткого времени в 2006 астрономы считали, что нашли двойную систему из таких объектов, Oph 162225-240515, которые исследователи описали как «планемо», или «объекты планетарной массы». Однако дальнейший анализ позволил установить, что их массы, скорее всего, больше 13 масс Юпитера, что превращает их в систему из коричневых карликов [23] [24] [25] .

Планеты-спутники и планеты поясов

Некоторые крупные спутники сходны по размерам с планетой Меркурий или даже превосходят её. Например, Галилеевы спутники и Титан. Алан Стёрн утверждает, что местоположение не должно иметь для планеты значения, и только геофизические признаки должны быть приняты во внимание при присуждении объекту статуса планеты. Он предлагает термин планета-спутник для объекта размером с планету, обращающегося вокруг другой планеты. Аналогично объекты размером с планету в Поясе астероидов или Поясе Койпера также могут считаться планетами согласно Стёрну [26] .

Движение планет по орбите

Согласно рабочему определению все планеты вращаются вокруг звёзд, что лишает статуса планеты любые потенциальные «планеты-одиночки». В Солнечной системе, все планеты обращаются по своим орбитам в том направлении в каком вращается Солнце (против часовой стрелки, если смотреть со стороны северного полюса Солнца). Хотя по крайней мере одна экзопланета, WASP-17b, вращается по орбите вокруг звезды в направлении противоположном её вращению [27] . Период, за который планета обращается вокруг звезды, называется сидерическим или годом [28] . Планетарный год в немалой степени зависит от расстояния планеты от звезды; чем дальше планета находится от звезды, тем большую дистанцию она должна пройти, и тем медленнее она движется, так как менее затронута гравитацией звезды. Поскольку никакая орбита не является совершенно круглой, расстояние между звездой и планетой на орбите варьируется в течение сидерического периода. Точку орбиты где планета ближе всего к звезде называют периастром (перигелий в Солнечной системе), тогда как самая дальняя точка орбиты называется апоастром (афелий в Солнечной системе). Поскольку в периастре планета ближе к светилу, потенциальная энергия гравитационного взаимодействия переходит в кинетическую и её скорость увеличивается подобно тому как брошенный высоко камень — ускоряется приближаясь к земле, а когда планета находится в апоастре, её скорость уменьшается, подобно тому как тот же брошенный вверх камень замедляется в верхней точке полёта [29] .

Орбита любой планеты определяется несколькими элементами:

    Эксцентриситет определяет, насколько планетарная орбита вытянута. У планет с более низким эксцентриситетом более округлые орбиты, тогда как планеты с высоким эксцентриситетом имею орбиту, приближённую скорее к эллипсу. У планет Солнечной системы очень низкие эксцентриситеты, и, таким образом, почти круглые орбиты [28] . Кометы и объекты пояса Койпера (как и многие экзопланеты) имеют очень высокий эксцентриситет [30][31] .

Наклон оси

Планеты также имеют, помимо прочего, разные углы осевого наклона: они лежат под определённым углом к плоскости экватора материнской звезды. Именно поэтому количество света, получаемого тем или иным полушарием, меняется в течение года; когда северное полушарие оказывается от звезды дальше, чем южное, и наоборот. На каждой планете есть смена сезонов; изменение климата в течение года. Время, когда одно из полушарий находится ближе или дальше всего от Солнца называется солнцестоянием. У полушарий на протяжении всей планетарной орбиты случается два солнцестояния; когда одно из полушарий находится в летнем солнцестоянии, и день там самый длинный, и когда одно из полушарий находится в зимнем солнцестоянии, с его чрезвычайно коротким днём. Разное количество тепла и света получаемое каждым полушарием служит причиной ежегодных изменений в погодных условиях. Осевой наклон Юпитера чрезвычайно низкий, и сезонные изменения там минимальны; Уран, в противоположность обладает осевым наклоном настолько экстремально высоким, что практически «обращается вокруг Солнца на боку», и одно из его полушарий либо постоянно под солнечным светом, либо постоянно находится в темноте во время солнцестояний [35] . Что касается экзопланет, то их осевые наклоны неизвестны наверняка, однако, большинство «горячих юпитеров» обладают, по-видимому, чрезвычайно низким наклоном, что является результатом близости к звезде [36] .

Вращение

Помимо того, что планеты обращаются по своей орбите вокруг звезды, они ещё и вращаются вокруг своей оси. Период вращения планеты вокруг оси известен как сутки. Большинство планет Солнечной системы вращаются вокруг своей оси в том же направлении в каком обращаются вокруг Солнца, против часовой стрелки, если смотреть со стороны северного полюса Солнца, кроме Венеры, которая вращается по часовой стрелке [37] и Урана [38] , экстремальный осевой наклон которого порождает споры, какой полюс считать южным и какой северным, и вращается ли он против часовой или по часовой стрелке [39] . Однако, какого бы мнения ни придерживались стороны, вращение Урана ретроградное относительно его орбиты.

Вращение планеты может быть вызвано несколькими факторами ещё на стадии формирования. Изначально угловой момент может быть задан индивидуальными угловыми моментами аккрецируемых объектов на ранних стадиях формирования планеты. Аккреция газа газовыми гигантами также может способствовать заданию углового момента планете. Наконец, во время последних стадий формирования, случайный процесс протопланетарного прироста может почти непредсказуемо изменить ось вращения планеты [40] . Есть большая разница между длиной дня у планет: если Венере требуется 243 земных дня для одного оборота вокруг оси, то газовым гигантам хватает нескольких часов [41] . Период вращения для экзопланет не известен. Однако близкое расположение к звёздам горячих юпитеров означает, что на одной стороне планеты царит вечная ночь, а на другой вечный день (орбита и вращение синхронизированы) [42] .

«Чистая орбита»

Один из критериев, который позволяет определить небесное тело как классическую планету, — чистые от иных объектов орбитальные окрестности. Планета, которая очистила свои окрестности, накопила достаточную массу, чтобы собрать или, наоборот, разогнать все планетезимали на своей орбите. То есть, планета обращается по орбите вокруг своего светила в изоляции (если не считать её спутников и троянцев), в противоположность тому, чтобы делить свою орбиту с множеством объектов подобных размеров. Этот критерий статуса планеты был предложен МАС в августе 2006 года. Этот критерий лишает такие тела Солнечной системы как Плутон, Эрида и Церера статуса классической планеты, относя их к карликовым планетам [1] . Несмотря на то, что этот критерий относится пока только к планетам Солнечной системы, некоторое количество молодых звёздных систем, находящихся на стадии протопланетарного диска, имеют признаки «чистых орбит» у протопланет [43] .

Эволюция планетных систем

Солнечная система

Согласно текущему определению термина планета, которое дал МАС, в Солнечной системе находятся восемь классических планет и пять карликовых планет [44] . В порядке увеличения расстояния от Солнца классические планеты расположены так:

Юпитер самый крупный — его масса равна 318 земным. Меркурий самый маленький, с массой всего лишь 0,055 от земной. Планеты Солнечной системы можно разделить на 2 группы на основании их характеристик и состава:

  • Земного типа. Планеты, похожие на Землю, в основе своей состоящие из горных пород: Меркурий, Венера, Земля и Марс. С массой в 0,055 от земной, Меркурий — самая маленькая планета земной группы (и вообще самая маленькая из известных на сегодняшний день планет) в Солнечной системе, тогда как Земля — самая крупная землеподобная планета в Солнечной системе.
  • Газовые гиганты. Планеты, в значительной степени состоящие из газа, и значительно более массивные, чем планеты земной группы: Юпитер, Сатурн, Уран и Нептун. Юпитер, с 318 земными массами — крупнейшая планета в Солнечной системе. Сатурн, не намного меньший, весит «всего» 95 земных масс.
    • Ледяные гиганты, включают в себя Уран и Нептун. Это подкласс газовых гигантов, которых отличает от большинства газовых гигантов «небольшая» масса (14-17 земных) и значительно меньшие запасы гелия и водорода в атмосферах наравне со значительно большими пропорциями горных пород и льда.
  • Карликовые планеты. До решения 2006 года несколько объектов, обнаруженных астрономами, были предложены к присвоению им статуса планет МАС. Однако в 2006 все эти объекты были определены как карликовые планеты — объекты, отличающиеся от планет. В настоящее время МАС признаёт 5 карликовых планет в Солнечной системе: Цереру, Плутон, Хаумеа, Макемаке и Эриду. Ещё несколько объектов пояса астероидов [источник не указан 684 дня] и пояса Койпера рассматриваются как текущие кандидаты, и ещё 50 косвенно подходят под определение. Возможно, когда пояс Койпера будет исследован полностью, таких объектов будет обнаружено до 200. Карликовые планеты во многом разделяют особенности планет, хотя и остаются известные различия — а именно то, что они недостаточно массивны, чтобы расчистить свои орбитальные окрестности. По определению, все карликовые планеты являются членами какой-нибудь популяции. Церера — крупнейший объект в астероидном поясе, в то время как Плутон, Хаумеа и Макемаке — объекты пояса Койпера, а Эрида — рассеянного диска. Майк Браун и другие учёные уверены, что более 40 транснептуновых объектов будут впоследствии признаны МАС как карликовые планеты, согласно действующему определению [45] .
Сравнение планет и карликовых планет Солнечной системы

0,12

557

Процессы

Формирование планеты

Ясности в том, какие процессы идут при формировании планет и какие из них доминируют, до сих пор нет. Обобщая наблюдательные данные, можно утверждать лишь то, что [47] :

  • Они образуются ещё до момента рассеяния протопланетного диска.
  • Значительную роль в формировании играет аккреция.
  • Обогащение тяжелыми химическими элементами идет за счет планетезималей.

Таким образом, отправная точка всех рассуждений о пути формирования планет — газопылевой (протопланетный) диск вокруг формирующейся звезды. Сценариев, как из него получились планеты, существует два типа [48] :

  1. Доминирующий на данный момент — аккреционный. Предполагает формирования из первоначальных планетозималей.
  2. Второй полагает, что планеты сформировались из первоначальных «сгущений», впоследствии сколлапсировавших.

Окончательно формирование планеты прекращается, когда в молодой звезде зажигаются ядерные реакции и она рассеивает протопланетный диск, за счет давления солнечного ветра, эффекта Пойнтинга — Робертсона и прочих [49] .

Аккреционный сценарий

Вначале из пыли образуются первые планетозимали. Существует две гипотезы как это происходит:

  • Одна утверждает, что они растут из-за парного столкновения очень маленьких тел.
  • Вторая, что планетозимали формируются в ходе гравитационного коллапса в средней части протопланетного газопылевого диска.

По мере роста возникают доминирующие планетозимали, которые впоследствии станут протопланетами. Расчет темпов их роста довольно разнообразен. Однако базой для них служат уравнение Сафронова:

,

где R — размер тела, a — радиус его орбиты, M* — масса звезды, Σp — поверхностная плотность планетозимальной области, а FG — так называемый параметр фокусировки, ключевой в данном уравнении, для различных ситуаций он определяется по-своему. Расти такие тела могут не до бесконечности, а ровно до того момента пока есть небольшие планетозимали в их окрестностях, пограничная масса (так называемой массой изоляции) при этом получается:

В типичных условиях она варьирует от 0,01 до 0,1 M — это уже является протопланетой. Дальнейшее развитие протопланеты может следовать по следующим сценариям, один из которых приводит к образованию планет с твердой поверхностью, другой — к газовым гигантам.

В первом случае, тела с изолированной массой тем или иным образом увеличивают эксцентриситет и их орбиты пересекаются. В ходе череды поглощений более мелких протопланет образуются планеты подобные Земле.

Планета-гигант может образоваться если вокруг протопланеты останется много газа из протопланетного диска. Тогда в роли ведущего процесса дальнейшего приращения массы начинает выступать аккреция. Полная система уравнений описывающий данный процесс:

(1)

(2)

(3)

Смысл выписанных уравнений следующий (1) — предполагается сферическая симметрия и однородность протопланеты, (2) предполагается, что имеет место гидростатическое равновесие, (3) Нагрев идет при столкновении с планетозималями, а охлаждение происходит только за счет излучения. (4) — уравнения состояние газа.

Рост ядра будущей планеты-гиганта продолжается до M

10 [источник не указан 684 дня] . Примерно на этом этапе гидростатическое равновесие нарушается. С этого момента весь аккрецирующий газ уходит на формирование атмосферы планеты-гиганта.

Трудности аккреционного сценария

Первые же трудности возникают в механизмах формирования планетозималей. Общей проблемой для обеих гипотез является проблема «метрового барьера»: любое тело в газовом диске постепенно сокращает радиус своей орбиты, и на определенном расстоянии просто сгорит. Для тел размером порядка одного метра, скорость подобного дрейфа наибольшая, а характерное время гораздо меньше необходимого, чтобы планетозималь значительно увеличила свой размер [48] .

Кроме того, в гипотезе слияния метровые планетозимали при столкновении скорее разрушатся на многочисленные мелкие части, нежели образуют единое тело.

Для гипотезы формирования планетозималей в ходе фрагментации диска, классической проблемой была турбулентность. Однако, возможное её решение, а заодно и проблемы метрового барьера, было получено в недавних работах. Если в ранних попытках решений основной проблемой являлась турбулентность, то в новом подходе этой проблемы нет как таковой. Турбулентность может сгруппировать плотные твёрдые частицы, а вместе с потоковой неустойчивостью возможно образование гравитационно-связанного кластера, за время гораздо меньшее, чем время дрейфа к звезде метровых планетозималей.

Вторая проблема — это сам механизм роста массы:

  1. Наблюдаемое распределение размеров в поясе астероидов невозможно воспроизвести в данном сценарии [48] . Скорее всего, первоначальные размеры плотных объектов 10-100 км. Но это значит, что средняя скорость планетозималей снижается, а значит, снижается скорость формирования ядер. И для планет-гигантов это становится проблемой: ядро не успевает сформироваться до того, как протопланетный диск рассеется.
  2. Время роста массы сравнимо с масштабом некоторых динамических эффектов, способных повлиять на темпы роста. Однако произвести достоверные расчёты на данный момент не предоставляется возможным: одна планета с околоземной массой должна содержать не менее 10 8 планетозималей.

Сценарий гравитационного коллапса

Как и в любом самогравитирующем объекте, в протопланетном диске могут развиваться нестабильности. Впервые эту возможность рассмотрел Тумре (Toomre) в 1981 году. Оказалось, что диск начинает распадаться на отдельные кольца если

где cs — скорость звука в протопланетном диске, k — эпициклическая частота.

Сегодня параметр Q носит название «параметр Тумре», а сам сценарий называется неусточивостью Тумре. Время, за которое диск будет разрушен, сравнимо со временем охлаждения диска и высчитывается сходным собразом со временем Гельм-Гольца для звезды.

Трудности сценария гравитационного коллапса

Требуется сверхмассивный протопланетный диск.

Эволюция

Имя Экваториальный
диаметр [a]
Масса [a] Орбитальный
радиус [a]
Период обращения
(лет) [a]
Наклонение
к Солнечному экватору (°)
Эксцентриситет
орбиты
Период вращения
(дней)
Спутники[c] Кольца Атмосфера
Земная группа Меркурий 0,382 0,06 0,39 0,24 3,38 0,206 58,64 0 нет минимальна
Венера 0,949 0,82 0,72 0,62 3,86 0,007 −243,02 0 нет CO2, N2
Земля[b] 1,00 1,00 1,00 1,00 7,25 0,017 1,00 1 нет N2, O2
Марс 0,532 0,11 1,52 1,88 5,65 0,093 1,03 2 нет CO2, N2
Газовые гиганты Юпитер 11,209 317,8 5,20 11,86 6,09 0,048 0,41 65 да H2, He
Сатурн 9,449 95,2 9,54 29,46 5,51 0,054 0,43 62 да H2, He
Уран 4,007 14,6 19,22 84,01 6,48 0,047 −0,72 27 да H2, He
Нептун 3,883 17,2 30,06 164,8 6,43 0,009 0,67 13 да H2, He
Карликовые планеты
Церера 0,08 0,000 2 2,5—3,0 4,60 10,59 0,080 0,38 0 нет нет
Плутон 0,19 0,002 2 29,7—49,3 248,09 17,14 0,249 −6,39 4 нет временная
Хаумеа 0,37×0,16 0,000 7 35,2—51,5 282,76 28,19 0,189 0,16 2
Макемаке 0,000 7 38,5—53,1 309,88 28,96 0,159 ? 0 ? ? [d]
Эрида 0,19 0,002 5 37,8—97,6 44,19 0,442 Этот раздел статьи ещё не написан.

Структурообразующие

Этот раздел статьи ещё не написан.

Процессы магнитного поля

Одна из важнейших характеристик планет — внутренний магнитный момент который, в свою очередь, создаёт магнитосферу. Присутствие магнитного поля указывает на то, что планета ещё геологически «жива». Другими словами, у намагниченных планет перемещения электропроводимых материалов находящихся в их глубинах, генерируют их магнитные поля. Эти поля значительно изменяют взаимодействия между планетой и солнечным ветром. Намагниченная планета создёт в Солнечном ветре область вокруг себя, именуемую магнитосферой, сквозь которую солнечный ветер проникнуть не может. Магнитосфера может быть намного большей, чем сама планета. В противоположность, ненамагниченные планеты обладают лишь слабыми магнитосферами, порождёнными взаимодействием между ионосферой и солнечным ветром, которые не могут существенно защитить планету [50] .

Из восьми планет Солнечной системы лишь у двух магнитосфера практически отсутствует — это Венера и Марс [50] . Для сравнения, она есть даже у одного из спутников Юпитера — Ганимеда. Из намагниченных планет — магнитосфера Меркурия самая слабая, и едва-едва в состоянии отклонить солнечный ветер. Ганимедово магнитное поле в несколько раз мощнее, а Юпитерианское самое мощное в Солнечной системе (такое мощное, что может представлять серьёзный риск для будущих возможных пилотируемых миссий к спутникам Юпитера). Магнитные поля других планет-гигантов примерно равны по мощности Земному, но их магнитный момент значительно больше. Магнитные поля Урана и Нептуна сильно наклонены относительно оси вращения и смещены относительно центра планеты [50] .

В 2004 году, команда астрономов на Гавайских островах наблюдала экзопланету вокруг звезды HD 179949, которая, как казалось, создала на поверхности звезды-родителя солнечное пятно. Команда выдвинула гипотезу что магнитосфера планеты передавала энергию на поверхность звезды, увеличивая в определённой области и без того высокие 7760 °C температуры ещё на 400 °C [51] .

Атмосферные

Все планеты Солнечной системы обладают атмосферой, так как их больша́я масса и гравитация достаточны для того, чтобы удерживать газы у поверхности. Большие газовые гиганты достаточно массивны, чтобы удерживать вблизи от поверхности такие лёгкие газы как водород и гелий, тогда как с меньших планет они свободно улетучиваются в открытый космос [52] . Состав атмосферы Земли отличается от прочих планет Солнечной системы, потому что различные процессы, сопровождающие находящуюся на планете жизнь, создали условия для появления молекулярного кислорода, столь важного для всего живого, что населяет Землю [53] . Единственная в Солнечной системе планета без существенных следов атмосферы — Меркурий, у которого она была почти полностью «сдута» солнечным ветром [54] . Атмосфера планеты подвержена влиянию различных видов энергии, получаемых как от Солнца, так и из внутренних источников. Это приводит к формированию довольно динамичных погодных систем, к примеру таких как ураганы (на Земле), порой покрывающие почти всю планету пылевые бури (на Марсе), и размером с Землю антициклонический шторм на Юпитере (называемый: Большое красное пятно), и «пятна» в атмосфере (на Нептуне) [35] . По крайней мере на одной экзопланете, HD 189733 b, была замечена при составлении яркостной карты планеты погодная система, похожая на Большое Красное пятно, но раза в 2 больше [55] .

Горячие Юпитеры зачастую теряют свою атмосферу в космос из-за звёздной радиации, что очень напоминает собой кометный хвост [56] [57] . У этих планет могут быть сильные температурные перепады между дневной и ночной сторонами планеты, что рождает ветры, дующие со сверхзвуковыми скоростями [58] . И хотя у ночной и дневной стороны HD 189733b наблюдаются сильные перепады между дневной и ночной сторонами, атмосфера планеты эффективно перераспределяет энергию звезды вокруг планеты [55] .

Наблюдения и их особенности

Транзитный метод

Затменный или транзитный метод основан на том, что яркость звезды и планеты разная. И если луч зрения и плоскость орбиты лежат под небольшим углом, то, возможно, что видимый диск планеты пройдет перед диском звезды и «затмит» его, и яркость звезды чуть-чуть изменится.

Вероятность благоприятного исхода — отношения размера звезды к диаметру орбиты. И для близковращающихся планет равно около 10 %, падая с удалением. И это первый недостаток этого метода.

Второй заключается в высоком проценте ложной тревоги, что требует дополнительного подтверждения каким либо иным способом.

И третий — повышенная требовательность к точности измерений. Так как необходимо решать обратную задачу, решение которой неустойчиво по Ляпунову [59] .

Однако, данный метод единственно известный, с помощью которого можно определить угловой размер экзопланеты, а также, при условии оценки расстояния, и её диаметр. Кроме этого, свет звезды при «затмении» проходит через атмосферу и есть возможно снять спектр, а из него получить данные о химическом составе верхних слоев и понять общий вид процессов, которые там происходят.

Крупнейшие проводимые эксперименты на данный момент — Corot, Kepler, OGLE.

Метод лучевых скоростей

Метод Доплера (радиальных скоростей, лучевых скоростей) — метод обнаружения экзопланет, заключающийся в спектрометрическом измерении радиальной скорости звезды. Звезда, обладающая планетной системой, будет двигаться по своей собственной небольшой орбите в ответ на притяжение планеты. Это в свою очередь приведёт к изменению скорости, с которой звезда движется по направлению к Земле и от неё (то есть к изменению в радиальной скорости звезды по отношению к Земле). Такая радиальная скорость звезды может быть вычислена из смещения в спектральных линиях, вызванных эффектом Доплера.

На текущий момент метод радиальных скоростей является наиболее продуктивным методом обнаружения экзопланет. Он не зависит от расстояния до звезды, но для достижения высокой точности измерений необходимо высокое отношение сигнал/шум, и поэтому, метод, как правило, используется только для относительно близких звёзд (до 160 световых лет). Метод Доплера позволяет легко находить массивные планеты вблизи своих звёзд, но для обнаружения планет на больших расстояниях требуются многолетние наблюдения. Планеты с сильно наклонёнными орбитами производят меньшие колебания звезды в направлении Земли, и, поэтому их также сложнее обнаружить.

Физические характеристики

Масса

Одна из определяющих физических характеристик планеты — это масса, достаточная для того, чтобы её собственная сила тяжести преобладала над электромагнитными силами, связывающими её физические структуры, приводя планету в состояние гидростатического равновесия. Следовательно, все планеты являются сферическими или сфероидальными по форме. До определённой массы объект может быть неправильной формы, но после достижения этого значения, которое определяется на основании химического состава небесного тела, гравитационные силы начинают стягивать объект к его собственному центру массы вплоть до приобретения объектом сфероидальной формы [60] .

Помимо прочего, масса — важный отличительный признак планет от звёзд. Верхний предел массы для планеты 13 масс Юпитера, после чего достигаются все условия для начала термоядерного синтеза. В Солнечной системе нет планет даже приблизительно подходящих под эту черту. Однако некоторые экзопланеты имеют массу ненамного ниже этой грани. Энциклопедия экзопланет перечисляет несколько планет близких к этой границе: HD 38529 c, AB Живописца b, HD 162020 b, и HD 13189 b. Есть несколько объектов и с более высокой массой, но так как они лежат выше границы необходимой для термоядерного синтеза, их следует отнести к коричневым карликам [5] .

Наименьшая из известных планет, исключая карликовые планеты и спутники, это PSR B1257+12 b, одна из первых обнаруженных экзопланет (1992 год) на орбите вокруг пульсара. Масса планеты — приблизительно половина от массы Меркурия [5] .

Внутренняя дифференциация

Каждая планета начинала своё существование в жидком, текучем состоянии; на ранних стадиях формирования более плотные, более тяжёлые материалы оседали к центру, а более лёгкие материалы оставались около поверхности. Поэтому у каждой планеты наблюдается некоторая дифференциация внутренней структуры, выражающаяся в том, что планетарное ядро покрыто мантией, которая есть или была жидкой. Планеты земной группы скрывают мантию под плотной корой [61] , тогда как в газовых гигантах мантия просто распадается в лежащих выше облаках. Планеты земной группы обладают ядрами из ферромагнитных элементов, таких как железо и никель, а также мантией из силикатов. Такие газовые гиганты как Юпитер и Сатурн обладают ядрами из горных пород и металлов окружённых мантиями из металлического водорода [62] . А ледяные гиганты наподобие Урана и Нептун, обладают ядрами из горных пород окружённых мантией из водяного, аммиачного, метанового и прочих льдов [63] . Перемещение жидкости внутри ядер планет создаёт эффект геодинамо, которое генерирует магнитное поле [61] .

Вторичные характеристики

Некоторые планеты или карликовые планеты (например, Юпитер и Сатурн, Нептун и Плутон) находятся в орбитальном резонансе друг с другом или с более мелкими телами (что также характерно для спутниковых систем). Все планеты, за исключением Венеры и Меркурия, имеют естественные спутники, которые также зачастую называют «лунами». Так у Земли всего лишь один естественный спутник, у Марса — два, а у планет гигантов их множество. Многие спутники планет гигантов обладают рядом черт, роднящих их с планетами земной группы и карликовыми планетами. Многие из них даже могут быть исследованы на предмет наличия жизни (в особенности Европа) [64] [65] [66] ).

Четыре планеты-гиганта также обладают кольцами, различными по размеру и составу. Они состоят преимущественно из пыли и твёрдых частиц, но могут также включать в себя небольшие спутники, являющиеся по сути каменными глыбами размером в несколько сот метров, которые формируют и поддерживают структуру. Происхождение колец до конца не ясно, предположительно, они являются результатом разрушения спутников, пересёкших предел Роша для своей планеты и разрушенными приливными силами [67] [68] .

Никакие из вторичных характеристик экзопланет не изучались. Но, предположительно, субкоричневый карлик Cha 110913-773444, который классифицируется как одиночная планета, обладает небольшим протопланетным диском [21] .

История

Идея планеты развивалась на протяжении всей истории, от божественных странствующих звёзд старины к современному видению их как астрономических объектов — зародившемуся в научную эру. Понятие ныне стало восприниматься более широко — чтобы включить в себя не только миры внутри Солнечной системы, но и в сотнях внесолнечных систем. Двусмысленность рождённая определением планеты, привела к большому противоречию в учёном мире.

Ещё в древности астрономы заметили, что некоторые светила на небе двигались относительно других звёзд, описывая характерные петли на небесной сфере. Древние греки назвали эти светила « πλάνητες ἀστέρες » ( Странствующие звёзды ) или просто « πλανήτοι » ( Странники ) [69] , из чего и было выведено современное слово «планета» [70] [71] . В Греции, Китае, Вавилоне и всех древних цивилизациях [72] [73] почти универсальным было мнение, что Земля находится в центре Вселенной, и что все планеты вращаются вокруг неё. Причина таких представлений кроется в том, что древним казалось, что планеты и звёзды вращаются вокруг Земли каждый день [74] и ощущение того, что Земля тверда и стабильна, что она не перемещается, а находится в состоянии покоя.

Вавилон

Шумеры — предшественники вавилонян, которые являются одной из первых цивилизаций в мире, которой приписывается изобретение письма к уже по крайней мере 1500 году до н. э. уверенно находили на небе Венеру [75] . Вскоре после этого, другая «внутренняя» планета Меркурий и «внешние» (за орбитой Земли) Марс, Юпитер и Сатурн были уверенно найдены Вавилонскими астрономами. Эти планеты оставались единственными известными вплоть до изобретения телескопа в раннем «Новом времени» [76] .

Первой цивилизацией, обладающей функциональной теорией планет, были вавилоняне, которые жили в Месопотамии в I и II тысячелетия до н. э. Самый старый сохранившийся планетарный астрономический текст того периода — венерианские таблицы Амми-Цадуки, датируемые VII столетием до н. э., вероятно, они являют собой копию более древних, датируемых началом II тысячелетия до н. э [77] . Вавилоняне также заложили основы того, что будет в будущем именоваться «западной астрологией» [78] . «Энума Ану Энлиль» написанная в новоассирийский период в VII веке до н. э [79] включает в себя список предзнаменований и их отношении к разным астрономическим явлениям, включая движение планет [80] .

Вавилоняне использовали двойную систему названий: «научную» и «божественную». Скорее всего, именно они и придумали первыми давать планетам имена богов [81] [82] .

Древняя Греция и Древний Рим

Птолемеевы «планетарные сферы»
Современность Луна Меркурий Венера Солнце Марс Юпитер Сатурн
Средневековая Европа [83] ☾ LVNA ☿ MERCVRIVS ♀VENVS ☉ SOL ♂ MARS ♃ IVPITER ♄ SATVRNVS

В Древней Греции доэллинистического и раннего эллинистического периодов названия планет не имели отношения к божествам: Сатурн называли Файнон, «яркая», Юпитер — Фаэтон, Марс — Пироэйс, «пламенная»; Венера была известна как Фосфорос, «Вестница Света» (в период утренней видимости) и Гесперос (в период вечерней видимости), а наиболее быстро исчезающий Меркурий как Стилбон.

Но позже, по всей видимости, греки переняли «божественные» названия планет у вавилонян, но переделали их под свой пантеон. Найдено достаточно соответствий между греческой и вавилонской традицией именования, чтобы предположить, что они не возникли отдельно друг от друга [77] . Перевод не всегда был точным. Например, вавилонский Нергал — бог войны, таким образом, греки связывали его с Аресом. Но в отличие от Ареса, Нергал был также богом мора, эпидемий и преисподней [84] . Позже уже древние римляне вместе с культурой и представлениями об окружающем мире скопировали у древних греков и названия планет. Так появились привычные нам Юпитер, Сатурн, Меркурий, Венера и Марс.

Немало римлян стали последователями веры, вероятно, зародившейся в Месопотамии, но достигшей окончательной формы в эллинистическом Египте, — в то, что семь богов, в честь которых назвали планеты, взяли на себя заботу о почасовых изменениях на Земле. Порядок начинал Сатурн, Юпитер, Марс, Солнце, Венера, Меркурий, Луна (от самых дальних к самым близким) [85] . Следовательно, первый день начинался Сатурном (1-й час), второй день Солнцем (25-й час), следующий Луной (49-час), затем Марсом, Меркурием, Юпитером и Венерой. Так как каждый день именовался в честь бога, которым он начинался, этот порядок сохранился в римском календаре после отмены «Рыночного цикла» — и всё ещё сохранился во многих современных языках [86] .

Термин «планета» происходит от древнегреческого πλανήτης, что означало «странник», так называли объект изменивший своё положение относительно звёзд. Поскольку, в отличие от вавилонян, древние греки не придавали значения предсказаниям, планетами первоначально не особо интересовались. Пифагорейцы, в VI и V столетии до н. э. развили свою собственную независимую планетарную теорию, согласно которой Земля, Солнце, Луна и планеты обращаются вокруг «Центрального Огня» который принимался за теоретический центр Вселенной. Пифагор или Парменид первыми идентифицировали «вечернюю» и «утреннюю звезду» (Венеру) как один и тот же объект [87] .

В III веке до н. э, Аристарх Самосский предложил гелиоцентрическую систему, согласно которой Земля и другие планеты вращались вокруг Солнца. Однако, геоцентризм оставался доминирующим вплоть до Научной революции. Возможно, что антикитерский механизм был аналоговым компьютером, созданным для вычисления примерного положения Солнца, Луны, и планет на определённую дату.

К I веку до н. э, во время эллинистического периода, греки приступили к созданию своих сообственных математических схем по предсказанию положения планет. Древние вавилоняне использовали арифметику [источник не указан 726 дней] , тогда как схема древних греков базировалась на геометрических решениях [источник не указан 726 дней] . Этот подход позволил далеко продвинуться в объяснении природы перемещения небесных тел, видимых невооружённым глазом с Земли. Наиболее полное отражение эти теории нашли в Альмагесте, написанным Птолемеем во II веке н. э. Доминирование птолемеевой модели было столь полным, что она затмила все предыдущие работы по астрономии и оставалась самым авторитетным астрономическим трудом в западном мире на протяжении 13 столетий [77] [88] . Комплекс законов Птолемея хорошо описывал характеристики орбит 7 планет, которые по мнению греков и римлян вращались вокруг Земли. В порядке увеличения расстояния от Земли, по мнению научного сообщества того времени, они располагались следующим образом: Луна, Меркурий, Венера, Солнце, Марс, Юпитер и Сатурн [71] [88] [89] .

Древняя и средневековая Индия

В 499 году индийский астроном Ариабхата предложил планетарную модель, предполагающую, что планеты движутся по эллиптическим орбитам, а не круглым. Модель Ариабхаты также включала в себя вращение Земли вокруг своей оси, чем он объяснил кажущееся движение звёзд на запад [90] [91] . Эта модель была широко принята среди индийских астрономов, которые жили и трудились позже. Последователи Ариабхаты особо были сильны в Южной Индии, где его принципы суточного вращения Земли, среди прочих, легли в массу работ, основывавшихся на его теории [92] .

В 1500 году Нилаканта Сомайали из Керальской школы, в своей Тантрасанграхе, пересмотрел модель Ариабхаты [93] [94] . В своей Ариабхатавахьязе, комментариях к Ариабхатье, он предложил планетарную модель, где Меркурий, Венера, Марс, Юпитер и Сатурн вращались вокруг Солнца, а оно, в свою очередь, вокруг Земли, что напоминает систему Тихо позднее предложенную Тихо Браге в конце XVI века. Большинство астрономов Керальской школы приняли его модель и последовали за ним [93] [94] [95] .

Исламский мир

В XI веке Авиценной наблюдался транзит Венеры, который установил, что Венера, по крайней мере иногда, ниже Солнца [96] . В XII веке, Ибн Баджа наблюдал «две планеты как чёрные пятна на лике Солнца», что позже было идентифицировано как транзиты Меркурия и Венеры Марагинским астрономом Кутб ад Дином Ширази в XIII веке [97] .

Европейское Возрождение

Планеты эпохи Ренессанса
Меркурий Венера Земля Марс Юпитер Сатурн

Пять видимых невооружённым глазом планет были известны с древнейших времён и оказали значимое влияние на мифологию, религиозную космологию и древнюю астрономию.

Метод научного познания совершенствовался, и понимание термина «планета» менялось, поскольку они двигались относительно других небесных тел (относительно неподвижных звёзд); к пониманию их как тел вращающихся вокруг Земли (во всяком случае, так казалось людям); к XVI веку планеты стали определять как объекты обращающиеся вокруг Солнца вместе с Землёй, когда гелиоцентрическая модель Коперника, Галилея и Кеплера завоевала влияние в научном сообществе. Таким образом, Земля тоже вошла в список планет в то время как Солнце и Луна были из него исключены [98] .

Одновременно с этим нарушилась традиция называть планеты именем греческих или римских богов. В итоге, в каждом языке Земля зовётся по своему.

Множество романских языков сохраняют в обращении древнеримское Терра (или его вариации) которое используется для обозначения «суши» (противоположности «моря») [99] . Однако, нероманские языки используют свои сообственные родные названия. Например греки до сих пор сохраняют оригинальное древнегреческое Γή (Ги или И); германские языки, включая английский, используют вариации древнегерманского ertho [100] , что можно видеть на примере английского Earth, немецкого Erde, голландского Aarde, и скандинавского Jorde.

Неевропейские культуры используют другие схемы для именования планет. В Индии используется система наименования основанная на Наваграхе, которая включает в себя семь «традиционных» планет (Сурья для Солнца, Чандра для Луны, и Будха, Шукра, Мангала, Брихаспати и Шани для планет Меркурий, Венера, Марс,Юпитер и Сатурн) и восходящие и нисходящие Узлы Луны Раху и Кету. Китай и другие страны Восточной Азии, исторически подвергшиеся влиянию Китая (Япония, Корея и Вьетнам), используют систему наименования, основанную на Пяти элементах (стихиях): Воде (Меркурий), Металле (Венера), Огне (Марс), Дереве (Юпитер) и Земле (Сатурн) [86] .

Когда в XVII веке были открыты первые спутники Юпитера и Сатурна, поначалу термины «планета» и «спутник» использовались для них попеременно — впрочем, уже в следующем столетии слово «спутник» использовалось более часто [101] . До середины XIX века число «планет» быстро повышалось, и любому обращающемуся строго по орбите вокруг Солнца объекту, научное сообщество давало статус планеты.

XIX век

Планеты в ранних 1800-х
Меркурий Венера Земля Марс Веста Юнона Церера Паллада Юпитер Сатурн Уран

В середине XIX столетия астрономы начали понимать, что объекты, которые они открыли в течение последних 50 лет (такие как Церера, Паллада, Юнона и Веста), очень отличаются от обычных планет. Они располагались в одной и той же области между Марсом и Юпитером (пояс астероидов) и имели намного меньшую массу; в результате они были реклассифицированы как «астероиды». За недостатком любого формального определения, «планета» стала пониматься как любое большое тело, которое обращалось вокруг Солнца. Астероиды и планеты разделили, и поток новых открытий, как казалось, пресёкся с открытием Нептуна в 1846 году. Не было никакой очевидной потребности иметь формальное определение [102] .

XX век

Планеты поздних 1800-х по 1930 год
Меркурий Венера Земля Марс Юпитер Сатурн Уран Нептун

В XX веке был открыт Плутон. После того, как начальные стадии наблюдений убедили астрономов в том, что он крупнее Земли [103] , объект был немедленно принят как девятая планета. Дальнейшие наблюдения позволили установить, что Плутон гораздо меньше, а в 1936 году Реймонд Литолтон предположил, что Плутон мог быть сбежавшим спутником Нептуна [104] , и в 1964 Фред Лоуренс Уиппл предположил, что Плутон это комета [105] . Однако, поскольку Плутон был более крупным, чем все известные астероиды, но и не был похож на большинство планет [106] , он сохранял свой статус до 2006 года.

Планеты с 1930 по 2006

Меркурий Венера Земля Марс Юпитер Сатурн Уран Нептун Плутон

В 1992 году астрономы Александр Вольщан и Дейл Фрейл объявили об открытии планет вокруг пульсара, PSR B1257+12 [107] . Как полагают, это было первым открытием планет у другой звезды. Затем, 6 октября 1995, Мишель Мэор и Дидье Кьело из Женевского университета анонсировали первое открытие экзопланет у обыкновенной звезды главной последовательности — (51 Пегаса) [108] .

Открытие экзопланет породило новую неопределённость в определении планеты: отсутствие чёткой границы между планетами и звёздами. Многие известные экзопланеты по своей массе во много раз превосходят Юпитер, приближаясь к звёздным объектам, известным как «коричневые карлики» [109] . Коричневые карлики обычно считаются звёздами, благодаря своей способности сжигать в термоядерной реакции дейтерий — тяжёлый изотоп водорода. В то время как звёзды в 75 масс Юпитера способны сжигать водород, звёзды всего в 13 масс Юпитера способны сжигать дейтерий. Однако дейтерий — чрезвычайно редкий элемент, и большинство коричневых карликов, вероятно, успело полностью израсходовать его задолго до своего открытия, и в результате их невозможно отличить от сверхмассивных планет [110] .

XXI век

Планеты, 2006 — настоящее время
Меркурий Венера Земля Марс Юпитер Сатурн Уран Нептун

С открытием во второй половине XX века большого количества разного рода объектов в пределах Солнечной системы и больших объектов около других звёзд начались диспуты о том, что следует считать планетой. Начались специфические споры относительно того, следует ли считать планетой объект, выделяющийся из основного «населения» пояса астероидов, или если он достаточно крупный для дейтериевого термоядерного синтеза.

В конце 1990-х — начале 2000-х было подтверждено существование в области орбиты Плутона пояса Койпера. Таким образом, было установлено, что Плутон является лишь одним из крупнейших объектов данного пояса, что заставило многих астрономов лишить его статуса планеты.

Немалое число других объектов того же пояса, например, Квавар, Седна и Эрида, были объявлены в массовой прессе десятой планетой, хотя и не получили широкого научного признания как таковые. Открытие Эриды в 2005 году, как считалось, более крупной и на 27 % более массивной, чем Плутон, создало потребность в ведении официального определения для планеты.

Признавая проблему, МАС приступил к разработке определения для планеты, что завершилось к 2006 году. Число планет Солнечной системы сократили до 8 значительно крупных тел обладающих «чистой» орбитой (Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун) и определили как новый класс — карликовые планеты, в число которых включили три объекта (Церера, Плутон и Эрида) [111] .

Определение экзопланеты

В 2003 Международный астрономический союз (МАС), а если точнее, рабочая группа по экзопланетам, утвердили положение, в котором на основе нижеследующих пунктов проводилась грань между планетой и коричневым карликом [112] :

  1. Объект с истинной массой ниже допредельной для термоядерной реакции дейтерия (к настоящему моменту это масса приблизительно в 13 раз больше массы Юпитера для объектов с такой же изотопной распространённостью, как и на Солнце) [113] , обращающийся вокруг звезды или её останков — называется «планета» (независимо от того как сформировалась). Требования к минимальной массе и размеру, предъявляемые к экзопланете, такие же, как и к планетам Солнечной системы.
  2. Объекты с массой выше допредельной для термоядерной реакции дейтерия — «коричневые карлики» независимо от того как они сформировались и где расположены.
  3. Объекты, находящиеся в «свободном плавании» в молодых звёздных кластерах с массами ниже необходимой для термоядерной реакции с участием дейтерия, — не «планеты», но «субкоричневые карлики».

Это определение стало популярным в среде астрономов и даже публиковалось в специализированных научных изданиях [114] . Хотя это определение и временное, и служит лишь до тех пор, пока не будет принято официальное, оно обрело популярность по той причине, что не затрагивает проблему определения нижней пороговой массы для планеты [115] и этим помогает избежать противоречий касательно объектов Солнечной системы и, вместе с тем, не комментирует статус объектов обращающихся вокруг коричневых карликов как например 2M1207b.

Субкоричневый карлик — это объект с планетарной массой сформировавшийся в ходе коллапса газового облака (в противоположность аккреции как обычные планеты). Это различие в формировании между субкоричневыми карликами и планетами универсально не согласовано; астрономы делятся на два лагеря, решающих вопрос, считать ли процесс формирования планет критерием для классификации [116] [117] . Одна из причин инакомыслия состоит в том, что часто невозможно определить каков был процесс формирования: например сформированная аккрецией планета может «покинуть» свою планетарную систему и уйти в «свободное плавание», а самостоятельно сформировавшийся в звёздном кластере по ходу коллапса газового облака субкоричневый карлик может быть захвачен на орбиту вокруг звезды.

Карликовые планеты 2006 — настоящее время.

Церера Плутон Макемаке Хаумеа Эрида

13 Масс Юпитера — эмпирически выведенное значение, а не точное физическое. Количество дейтерия задействуемого в реакциях зависит не только от массы, но и от разницы в количествах между гелием и дейтерием в наличии [118] .

Источник

Оцените статью