Что значит параллельный интерфейс

Компьютерная Энциклопедия

Архитектура ЭВМ

Компоненты ПК

Интерфейсы

Мини блог

Самое читаемое

Введение

Параллельные и последовательные интерфейсы

Общая информация параллельных и последовательных интерфейсов

Для компьютеров и связанных с ним устройств наиболее распространенной является задача передачи дискретных данных, и, как правило, в значительных количествах (не один бит). Самый распространенный способ представления данных сигналами — двоичный: например, условно высокому (выше порога) уровню напряжения соответствует логическая единица, низкому — логический ноль (возможно и обратное представление). Для того чтобы передавать группу битов, используются два основных подхода к организации интерфейса:

  • параллельный интерфейс — для каждого бита передаваемой группы используется своя сигнальная линия (обычно с двоичным представлением), и все биты группы передаются одновременно за один квант времени. Примеры: параллельный порт подключения принтера (LPT-порт, 8 бит), интерфейс ATA/ATAPI (16 бит), SCSI (8 или 16 бит), шина PCI (32 или 64 бита);
  • последовательный интерфейс — используется лишь одна сигнальная линия, и биты группы передаются друг за другом по очереди; на каждый из них отводится свой квант времени (битовый интервал). Примеры: последовательный коммуникационный порт (COM-порт), последовательные шины USB и FireWire, PCI Express, интерфейсы локальных и глобальных сетей.

На первый взгляд организация параллельного интерфейса проще и нагляднее и этот интерфейс обеспечивает более быструю передачу данных, поскольку биты передаются сразу пачками. Очевидный недостаток параллельного интерфейса — большое количество проводов и контактов разъемов в соединительном кабеле (по крайней мере по одному на каждый бит). Отсюда громоздкость и дороговизна кабелей и интерфейсных цепей устройств, с которой мирятся ради вожделенной скорости. У последовательного интерфейса приемопередающие узлы функционально сложнее, зато кабели и разъемы гораздо проще и дешевле. Понятно, что на большие расстояния тянуть многопроводные кабели параллельных интерфейсов неразумно (и невозможно), здесь гораздо уместнее последовательные интерфейсы.

Читайте также:  Что значит отс партнер

Скорость передачи данных интерфейсов

Теперь подробнее разберемся со скоростью передачи данных. Очевидно, что она равна числу бит, передаваемых за квант времени, деленному на продолжительность кванта. Для простоты можно оперировать тактовой частотой интерфейса — величиной, обратной длительности кванта. Это понятие естественно для синхронных интерфейсов, у которых имеется сигнал синхронизации (clock), определяющий возможные моменты возникновения всех событий (смены состояния). Для асинхронных интерфейсов можно воспользоваться эквивалентной тактовой частотой — величиной, обратной минимальной продолжительности одного состояния интерфейса. Теперь можно сказать, что максимальная (пиковая) скорость передачи данных равна произведению тактовой частоты на разрядность интерфейса. У последовательного интерфейса разрядность 1 бит, у параллельного она соответствует числу параллельных сигнальных цепей передачи битов данных. Остаются вопросы о достижимой тактовой частоте и разрядности. И для последовательного, и для параллельного интерфейсов максимальная тактовая частота определяется достижимым (при разумной цене и затратах энергии) быстродействием приемопередающих цепей устройств и частотными свойствами кабелей. Здесь уже очевидны выгоды последовательного интерфейса: для него, в отличие от параллельного интерфейса, затраты на построение высокоскоростных элементов не приходится умножать на разрядность.

В параллельном интерфейсе существует явление перекоса (skew), существенно влияющее на достижимый предел тактовой частоты. Суть его в том, что сигналы, одновременно выставленные на одной стороне интерфейсного кабеля, доходят до другого конца не одновременно из-за разброса характеристик цепей. На время прохождения влияет длина проводов, свойства изоляции, соединительных элементов и т. п. Очевидно, что перекос (разница во времени прибытия) сигналов разных битов должен быть существенно меньше кванта времени, иначе биты будут искажаться (путаться с одноименными битами предшествующих и последующих посылок). Вполне понятно, что перекос ограничивает и допустимую длину интерфейсных кабелей: при одной и той же относительной погрешности скорости распространения сигналов на большей длине набегает и больший перекос. Перекос сдерживает и увеличение разрядности интерфейса: чем больше используется параллельных цепей, тем труднее добиться их идентичности. Из-за этого даже приходится «широкий» (многоразрядный) интерфейс разбивать на несколько «узких» групп, для каждой из которых используются свои управляющие сигналы. В 90-х годах в схемотехнике приемопередающих узлов стали осваиваться частоты в сотни мегагерц и выше, то есть длительность кванта стала измеряться единицами наносекунд. Достичь соизмеримо малого перекоса можно лишь в пределах жестких компактных конструкций (печатная плата), а для связи отдельных устройств кабелями длиной в десятки сантиметров пришлось остановиться на частотах, не превышающих десятков мегагерц. Для того чтобы ориентироваться в числах, отметим, что за 1 нс сигнал пробегает по электрическому проводнику порядка 20–25 см. Наносекунда — это период сигнала с частотой 1 ГГц.

Читайте также:  Если моча пахнет нашатырем что это значит

Повышения пропускной способности параллельных интерфейсов

Для повышения пропускной способности параллельных интерфейсов с середины 90-х годов стали применять двойную синхронизацию DDR (Dual Data Rate). Ее идея заключается в выравнивании частот переключения информационных сигнальных линий и линий стробирования (синхронизации). В «классическом» варианте данные информационных линий воспринимаются только по одному перепаду (фронту или спаду) синхросигнала, что удваивает частоту переключения линии синхросигнала относительно линий данных. При двойной синхронизации данные воспринимаются и по фронту, и по спаду, так что частота смены состояний всех линий выравнивается, что при одних и тех же физических параметрах кабеля и интерфейсных схем позволяет удвоить пропускную способность. Волна этих модернизаций началась с интерфейса ATA (режимы UltraDMA) и прокатилась уже и по SCSI (Ultra160 и выше), и по памяти (DDR SDRAM). Кроме того, на высоких частотах применяется синхронизация от источника данных (Source Synchronous transfer): сигнал синхронизации, по которому определяются моменты переключения или действительности (валидности) данных, вырабатывается самим источником данных. Это позволяет точнее совмещать по времени данные и синхронизующие импульсы, поскольку они распространяются по интерфейсу параллельно в одном направлении. Альтернатива — синхронизация от общего источника (common clock) — не выдерживает высоких частот переключения, поскольку здесь в разных (пространственных) точках временные соотношения между сигналами данных и сигналами синхронизации будут различными.

Повышение частоты переключений интерфейсных сигналов, как правило, сопровождается понижением уровней сигналов, формируемых интерфейсными схемами. Эта тенденция объясняется энергетическими соображениями: повышение частоты означает уменьшение времени, отводимого на переключения сигналов. Чем выше амплитуда сигнала, тем выше должна быть скорость нарастания сигнала и, следовательно, выходной ток передатчика. Повышение выходного тока (импульсного!) нежелательно по разным причинам: большие перекрестные помехи в параллельном интерфейсе, необходимость применения мощных выходных формирователей, повышенное тепловыделение. Тенденцию снижения напряжения можно проследить на примере порта AGP (3,3/1,5/0,8 В), шин PCI/PCI-X (5/3,3/1,5 В), SCSI, шин памяти и процессоров.

Читайте также:  Сквиз криптовалюта что значит

Повышения пропускной способности последовательных интерфейсов

В последовательном интерфейсе явления перекоса отсутствуют, так что повышать тактовую частоту можно вплоть до предела возможностей приемопередающих цепей. Конечно, есть ограничения и по частотным свойствам кабеля, но изготовить хороший кабель для одной сигнальной цепи гораздо проще, чем для группы цепей. А когда электрический кабель уже «не тянет» требуемые частоту и дальность, можно перейти на оптический, у которого есть в этом плане огромные, еще не освоенные «запасы прочности». Устраивать же параллельный оптический интерфейс — слишком дорогое удовольствие.

Вышеприведенные соображения объясняют современную тенденцию перехода на последовательный способ передачи данных.

Источник

Параллельный интерфейс

Практическая работа

Изучение интерфейса периферийных устройств и особенностей настройки.

Интерфейсы

Одно из ключевых отличий персонального компьютера от игровой приставки и калькулятора заключается в том, что к нему можно подключать самые разнообразные внешние устройства. Это, например, могут быть устройства вывода информации — принтеры и плоттеры, ввода — модемы и видеокамеры. Можно соединить компьютер с локальной сетью и управлять станком ЧПУ, на кото

ром отфрезеровать, скажем, печатную плату, которую перед этим разработали в программе PCAD. То есть компьютер — это универсальное вычислительное устройство, которое возможно использовать в различных областях человеческой деятельности.

Любые внешние устройства подключаются к компьютеру через интерфейс (Interface — сопряжение). Под термином «интерфейс» понимают совокупность механических, электрических и программных характеристик линий связи, которые позволяют соединить вместе и организовать обмен информацией между двумя объектами. Кстати, из этого определения ясно, что вполне правомерно использовать термин «интерфейс» в самых разнообразных случаях, например, интерфейсный разъем, интерфейсный кабель, интерфейсная программа и т. д.

Так как конструкции внешних устройств, да и разных типов компьютеров, сильно отличаются друг от друга, то для упрощения процесса подключения компьютера к внешним устройствам было разработано несколько стандартных интерфейсов. В мире IBM PC наиболее популярными оказались следующие внешние интерфейсы — параллельный интерфейс LPT, он же Centronics, последовательные интерфейсы RS-232 и USB, а также сетевой интерфейс Ethernet. В последнее время становятся популярными последовательный интерфейс FireWire и инфракрасный IrDa. Кроме того, на подходе новые стандарты, которые позволят значительно увеличить скорость обмена информацией.

Параллельный интерфейс

Термин «параллельный интерфейс» означает, что данные от компьютера к принтеру передаются не побитно, а в виде машинных слов — байтов (8 битов). Для каждого разряда байта в кабеле интерфейса предназначен отдельный провод. Кроме того, параллельно данным передается различная служебная информация, например, о готовности принтера к работе или о том, что закончилась бумага.

Для параллельного интерфейса на корпусе компьютера установлен 25-контактный разъем DB-25S. Для подключения интерфейсного кабеля к принтеру используется 36-контактный разъем Centronics с плоскими контактами. Длина простого принтерного кабеля не должна превосходить 5 м, а экранированного — 12 м. Максимальная скорость передачи данных по параллельному интерфейсу лежит в диапазоне от 120 до 200 Кбайт/с.

Первоначально стандарт на параллельный интерфейс предусматривал только передачу данных из компьютера в принтер, а также подключение только одного внешнего устройства. А поскольку пользователи часто устанавливают несколько принтеров, например струйный и игольчатый, то в этом случае для переключения интерфейса между принтерами используется обычный галетный переключатель на 25 групп, который монтируется в стальной коробке.

Сложность установки дополнительных разъемов на корпус персонального компьютера заставила разработчиков взяться за совершенствование параллельного интерфейса. В 1994 г. был принят стандарт IEEE 1284, который определил расширенные возможности параллельного порта. В современном компьютере параллельный порт теперь может работать в нескольких режимах — AT или SPP (Standart Parallel Port) — стандартный параллельный порт, ЕРР (Enhanced Parallel Port) — усовершенствованный параллельный порт и ЕСР (Extended Capability Port) — параллельный порт с расширенными возможностями.

Спецификация ЕРР была разработана фирмами Zenith и Xircom, чтобы использовать параллельный порт для двунаправленной передачи данных. Подключаемые устройства должны соответствовать стандарту ЕРР, а системная плата — обеспечивать двунаправленную передачу. Максимальная скорость передачи данных по этому стандарту достигает 2 Мбайт/с.

Кроме двунаправленной передачи данных между внешним устройством и процессором, стандарт ЕРР предусматривает возможность передавать блоки данных непосредственно между оперативной памятью и интерфейсом, не занимая ресурсов процессора. В таком режиме используется канал прямого доступа к памяти, который реализуется чипсетом системной платы.

Порт ЕРР полностью совместим со стандартным параллельным интерфейсом. Дополнительно он обладает возможностью подключать без использования каких-либо механических переключателей до 64 периферийных устройств, соединенных в цепочку.

Дальнейшим развитием параллельного интерфейса стала спецификация ЕСР, предложенная корпорациями Microsoft и HP, которая позволила организовать скоростную двунаправленную передачу данных, сжатых по методу RLE (Run Length Encoding). Для повышения производительности используется промежуточный FIFO-буфер емкостью 16 Кбайт. Количество подключаемых периферийных устройств увеличено до 128.

Несмотря на различия между стандартами параллельного порта, для подключения используются одни и те же разъемы. Режим работы переключается в настройках BIOS, где нужно выбрать между вариантами SPP, ЕРР и ЕСР. В настоящее время параллельный порт применяют для подключения различных видов принтеров, сканеров и внешних накопителей, например, приводов ZIP и внешних винчестеров. Также он применяется для соединения двух компьютеров друг с другом, для чего в операционной системе Windows есть стандартная программа связи Прямое кабельное соединение.

В качестве сервисной функции усовершенствованный параллельный порт поддерживает режим Plug and Play, что позволяет операционной системе получить регистрационную информацию от подключенного к нему устройства. Но при подключении старых игольчатых принтеров, которые не поддерживают этот режим, пользователю самому надо указать тип и модель принтера.

Источник

Оцените статью