Какая память SSD лучше: отличия SLC, MLC, TLC и QLC
Рынок твердотельных накопителей наполнен широким ассортиментом моделей разных ценовых категорий. Компаний, самостоятельно производящих и чипы памяти, и контроллеры, немного, поэтому десятки брендов продают плюс-минус одинаковое железо под разными вывесками. Из-за этого фирма на упаковке имеет мало значения, а главной характеристикой SSD является тип используемой памяти.
Флеш-память для SSD классифицируется по плотности записываемых данных, количеству уровней сигнала, поддерживаемых одной ячейкой. Чем их больше – тем выше плотность записи, тем дешевле обойдется диск в пересчете на единицу объема. Сегодня выпускаются и продаются SSD с памятью SLC, MLT, TLC, а недавно к ним прибавились еще и модели на QLC.
Виды памяти для SSD
SLC – исторически первый тип флеш-памяти, применяемый в твердотельных накопителях. Аббревиатура расшифровывается как «Single Level Cell» (одноуровневая ячейка), и, как следует из названия, поддерживает один уровень сигнала. Такой блок лишь записывает логический 0 или 1, в зависимости от положения транзистора, и может содержать только 1 бит информации.
MLC – развитие SLC, расшифруется как «Multi Level Cell», то есть, «ячейка со многими уровнями». Транзистор такой флеш-памяти уже может «помнить» не просто 1 или 0, а несколько уровней сигнала, благодаря чему содержит 2 бита информации. Это позволяет поднять плотность записи при том же техпроцессе вдвое, а значит снизить цену на гигабайт емкости до 2 раз.
TLC или «Triple Level Cell» (три уровня) – логичное продолжение MLC. За счет тонкого управления уровнем заряда ячейки, и повышением чувствительности считывания, один элемент флеш-памяти может хранить в себе 3 бита информации.
QLC – самый новый, на данный момент (2019), вид памяти для SSD. Она расшифровывается как «Quad Level Cell» и, соответственно, способна хранить 4 бита данных в ячейке одновременно. Такая флеш-память – самая доступная, бюджетный диск на терабайт с ней можно найти по цене около $100-120.
Принципиальные отличия между SLC, MLC, TLC и QLC памятью SSD
Повышая емкость блока флеш-памяти, разработчики SSD могут снижать стоимость накопителей, но есть проблема. Нельзя просто наращивать число ячеек до 4, 6 или 10. Это существенно снижает ресурс диска, уменьшая количество циклов перезаписи, по истечении которого он уже не сможет ничего записывать (только читать).
С переходом на многоуровневые типы флеш-памяти сам транзистор, хранящий данные, принципиально не меняется. Он как был один, так и есть, просто инженеры научили его запоминать несколько уровней сигнала. При этом повышение их числа приводит к квадратичному росту количества уровней (комбинаций 0 и 1, записываемых в блок).
Для записи одного бита нужно всего 2 состояния (уровня) заряда: 0 и 1. Чтобы записать два бита – их уже должно быть 4: 00, 01, 10 и 11. Для трех бит требуется 8 уровней: 000, 001, 010, 011, 100, 101, 110 и 111. Для 4 бит на ячейку требуется 16 уровней сигнала. А чем больше уровней – тем «нежнее» сам транзистор, тем быстрее он изнашивается, деградирует.
Для SLC, если ячейки теряют чувствительность, можно просто слегка поднять подачу питания. Для других типов сделать это нельзя, так как при повышении накопленного заряда контроллер не сможет прочитать блок, например, приняв комбинацию 001 как 010. Вроде всего один бит сместился, но файл окажется поврежден. А чем больше уровней, тем ниже та самая граница по достижении которой элемент памяти выходит из строя.
Кроме того, что сами транзисторы становятся более чувствительными, частота обращения к ним тоже повышается. В итоге ресурс снижается в разы, а то и десятки или сотни раз. Если SLC в среднем выдерживает около 100 тыс. перезаписей, то MLC – около 10 тыс., TLC – 3-5 тыс., а самые дешевые чипы QLC переживают всего около 1 тыс. циклов. Инженеры прибегают к различным алгоритмам снижения нагрузки, но это лишь слегка улучшает износостойкость.
Третьей проблемой повышения плотности становится снижение скорости. Ведь чем больше уровней заряда может хранить транзистор, тем больше нагрузка на контроллер, который должен улавливать тончайшую разницу между схожими комбинациями бит. Чем больше состояний может поддерживать флеш-память SSD, тем она медленнее.
Дешево, быстро, надежно: сложный выбор
Чем больше бит хранит транзистор, тем память SSD будет дешевле в расчете на гигабайт, но тем ниже окажутся ее скорость и долговечность. Из-за этого накопители с разным типом чипов отличаются ценой, быстродействием и надежностью. SLC – самые быстрые и живучие, но дорогие. Из-за этого такие диски выпускаются, преимущественно, для корпоративного сегмента.
SSD с памятью MLC потихоньку уходит в прошлое. Все из-за того, что с переходом на 3D NAND чипы (содержащие транзисторы в несколько слоев), по мере устранения недостатков, ресурс TLC мало уступает MLC, но зато трехуровневая память обходится дешевле. Смысла платить больше почти нет, поэтому в потребительском сегменте новые модели на MLC выпускают только в верхнем сегменте.
Памятью MLC оснащаются, в основном, высокоскоростные модели вроде Samsung 970 PRO. Такие накопители можно смело использовать и в игровом, и рабочем, и развлекательном ПК или ноутбуке. Правда, чтобы иметь побольше места, придется заметно переплатить.
SSD на TLC 3D NAND занимают основную часть рынка. Большинство актуальных моделей содержат именно такие чипы. Хорошим примером твердотельного накопителя с такой памятью является Samsung 860 EVO, который и быстр, и достаточно надежен, но доступнее чем Pro.
QLC – вещь новая, еще не очень популярная, но уже встречающаяся в продаже. Популярные носители на ее базе – Samsung 860 QVO (не путать с EVO!). Также уже полно дисков от мелких китайских фирм, вроде KingSpec. Именно их и можно поискать по цене около $100 за терабайт. Правда, надежность подобных гаджетов пока не очень изучена, и брать их стоит только под файловое хранилище, установку игр, хранение мультимедиа. Но крайне не рекомендую качать на диски QLC торренты, писать потоковое видео (например, с IP-камеры) и подвергать иным активностям такого рода.
Подводя итоги, можно сказать, что SLC-память для SSD лучше во всем. Но она намного дороже, поэтому выпускается лишь для оборудования промышленного и серверного применения. MLC и TLC – оптимальный вариант по соотношению цены, скорости и надежности. Именно ее стоит брать для универсального компьютера, используемого и для работы, и игр.
Относительно QLC стоит быть осторожным. Да, это доступный вид памяти, который предлагает много гигабайт за немного денег. Но покупать такой диск под установку системы, а тем более, хранение ценных данных нежелательно ввиду малого числа отзывов и статистики.
Компромиссным вариантом является покупка нескольких накопителей разного типа. Взяв под систему и ценные файлы скоростную модель с NVME на 120-256 ГБ, можно быть спокойным и за сохранность файлов, и за быстродействие компьютера. А под хранение файлов, не подразумевающее частых перезаписей, для экономии можно взять тот же Samsung 860 QVO на 500 ГБ, 1 ТБ или больше.
Источник
Анатомия накопителей: SSD
Твёрдый, как камень
Точно так же, как транзисторы совершили революцию в компьютерной области, увеличив скорость переключения и выполнения математических операций, использование полупроводниковых устройств в качестве накопителей привело к такому же результату.
Первые шаги на этом пути были сделаны компанией Toshiba, предложившей в 1980 году концепцию флеш-памяти. Четыре года спустя она создала NOR-память, а в 1987 году — NAND-память. Первый коммерческий накопитель с использованием флеш-памяти (solid state drive, или SSD) был выпущен SunDisk (позже переименованной в SanDisk) в 1991 году.
Большинство людей начало своё знакомство с твердотельными накопителями с так называемых USB-флешек. Даже сегодня их структура в целом напоминает конструкцию большинства SSD.
Слева показан один чип NAND-памяти SanDisk. Как и SRAM, он используется в кэшах ЦП и GPU. Он заполнен миллионами «ячеек», созданных из модифицированных транзисторов с плавающим затвором. В них используется высокое напряжение для записи и стирания заряда в отдельных участках транзистора. При считывании ячейки на участок подается пониженное напряжение.
Если ячейка не заряжена, то при подаче пониженного напряжения ток течёт. Это даёт системе понять, что ячейка имеет состояние 0; в противоположном случае она имеет состояние 1 (т.е. при подаче напряжения ток не течёт). Благодаря этому чтение из NAND-памяти выполняется очень быстро, но запись и удаление данных не так быстры.
Самые лучшие ячейки памяти, называаемые одноуровневыми ячейками (single level cells, SLC), имеют только одну величину заряда, создаваемого на участке транзистора; однако существуют и ячейки памяти, способные иметь несколько уровней заряда. В общем случае всех их называют многоуровневыми ячейками (multi-level cells, MLC), но в отрасли производства NAND-памяти аббревиатурой MLC обозначают 4 уровня заряда. Другие типы имеют похожие названия: трёхуровневые (triple level, TLC) и четырёхуровневые (quad level, QLC) имеют, соответственно, 8 и 16 различных уровней заряда.
Это влияет на то, сколько данных можно хранить в каждой ячейке:
- SLC — 1 уровень = 1 бит
- MLC — 4 уровня = 2 бита
- TLC — 8 уровней = 3 бита
- QLC — 16 уровней = 4 бита
И так далее. Кажется, что QLC — самые лучшие ячейки, правда? К сожалению, это не так. Токи очень малы и чувствительны к электрическому шуму, поэтому для определения разных уровней заряда ячейки нужно считывать значение несколько раз, чтобы подтвердить его. Если вкратце, то SLC — самые быстрые ячейки, но занимают больше всего физического пространства, а QLC — самые медленные, но за свои деньги вы получаете больше бит.
В отличие от SRAM и DRAM, при отключении питания заряд в флеш-памяти сохраняется и его утечка происходит очень медленно. В случае системной памяти ячейки разряжаются за наносекунды, а поэтому постоянно должны обновляться. К сожалению, использование напряжения и подача заряда повреждают ячейки, и поэтому SSD со временем изнашиваются. Чтобы бороться с этим, используются хитрые процедуры, минимизирующие скорость износа; обычно они делают так, чтобы использование ячеек было наиболее равномерным.
Эту функцию контролирует управляющий чип, показанный справа. Ещё он выполняет те же задачи, что и чип LSI, используемый в HDD. Однако в приводах с вращающимися дисками есть отдельные чипы для DRAM-кэша и встроенного ПО Serial Flash, а в USB-флешке оба контроллера встроены. И поскольку они проектируются так, чтобы быть дешёвыми, особой функциональности вы от них не получите.
Но благодаря отсутствию подвижных частей можно с уверенностью ожидать, что производительность флеш-памяти будет выше, чем у HDD. Давайте посмотрим на показатели с помощью CrystalDiskMark:
Поначалу результаты разочаровывают. Скорость последовательного чтения/записи и случайной записи гораздо хуже, чем у протестированного HDD; однако произвольное чтение намного лучше, и это то преимущество, которое обеспечивает флеш-память. Запись и удаление данных выполняются довольно медленно, зато считывание обычно производится мгновенно.
Однако у этого теста есть ещё одна незаметная особенность. Тест USB-памяти обеспечивает подключение только по стандарту USB 2.0, который имеет максимальную скорость передачи всего 60 МБ/с, а HDD использовал порт SATA 3.3, обеспечивающий пропускную способность в 10 раз больше. К тому же использованная технология флеш-памяти довольно проста: ячейки имеют тип TLC и выстроены в длинные параллельные полосы; такая компоновка называется плоской (planar) или двухмерной (2D).
Флеш-память, используемая в лучших современных SSD, имеет тип SLC или MLC, то есть она работает чуть быстрее и изнашивается чуть медленнее, а полосы согнуты пополам и выстроены стоймя, образуя вертикальную или трёхмерную структуру ячеек. Также в них используется интерфейс SATA 3.0, хотя всё чаще применяется более быстрая система PCI Express через интерфейс NVMe.
Давайте взглянем на один такой пример: Samsung 850 Pro, в котором использованы эти хитрости с вертикальным расположением.
В отличие от тяжёлого 3,5-дюймового привода Seagate, этот SSD имеет размер всего 2,5 дюйма и намного тоньше и легче.
Откроем его (спасибо Samsung за использование таких дешёвых болтов Torx, которые чуть не развалились при демонтаже. ) и увидим, почему:
В нём почти ничего нет!
Ни дисков, ни рычагов, ни магнитов — просто одна печатная плата, состоящая из нескольких чипов.
Так что же мы тут видим? Небольшие чёрные чипы — это регуляторы напряжения, а остальные выполняют следующие функции:
- Samsung S4LN045X01-8030: трёхъядерный процессор на основе ARM Cortex R4, занимающийся обработкой инструкций, данными, коррекцией ошибок, шифрованием и управлением износом
- Samsung K4P4G324EQ-FGC2: 512 МБ памяти DDR2 SDRAM, используемой для кэша
- Samsung K9PRGY8S7M: каждый чип — это 64 ГБ 32-слойной вертикальной флеш-памяти NAND типа MLC (в сумме 4 чипа, два расположены на другой стороне платы)
У нас есть 2-битные ячейки флеш-памяти, несколько чипов памяти и много кэша, что должно обеспечить повышенную производительность. Почему? Вспомним, что запись данных во флеш-память — довольно медленный процесс, но наличие нескольких флеш-чипов позволяет выполнять запись параллельно. У USB-флешки нет много DRAM для хранения данных, готовых к записи, поэтому отдельный чип тоже в этом поможет. Вернёмся в CrystalDiskMark…
Улучшение оказалось огромным. Скорость и чтения, и записи стала значительно выше, а задержки намного меньше. Что ещё нужно для счастья? Меньше и легче, нет подвижных деталей; к тому же SSD потребляют меньше энергии, чем механические дисковые накопители.
Разумеется, за все эти преимущества имеют свою цену, и здесь слово «цена» используется в буквальном смысле: вы же помните, что за 350 долларов можно купить HDD на 14 ТБ? Если брать SSD, то за эту сумму удастся приобрести только 1 или 2 ТБ. Если вы хотите накопитель такого же уровня, то пока лучшее, что вы можете сделать — это потратить 4 300 долларов на один SSD корпоративного уровня ёмкостью 15,36 ТБ!
Некоторые производители изготавливали гибридные HDD — стандартные жёсткие диски, на печатных платах которых было размещено немного флеш-памяти; она используется для хранения данных на дисках, к которым часто осуществляется доступ. Ниже показана плата из гибридного накопителя Samsung ёмкостью 1 ТБ (иногда называемого SSHD).
В правом верхнем углу платы находятся чип NAND и его контроллер. Всё остальное примерно такое же, как и в модели Seagate, которую мы рассматривали в предыдущем посте.
Мы можем в последний раз воспользоваться CrystalDiskMark, чтобы посмотреть, есть ли какая-то ощутимая выгода от использования флеш-памяти в качестве кэша, но сравнение будет нечестным, так как диски этого накопителя вращаются со скоростью 7200 rpm (а у HDD WD, который мы использовали для аутопсии — всего с 5400 rpm):
Показатели немного лучше, но причиной этого, вероятно, является повышенная скорость вращения — чем быстрее диск перемещается под головками чтения-записи, тем быстрее можно передавать данные. Стоит также заметить, что файлы, сгенерированные тестом бенчмарка, не будут распознаны алгоритмом как активно считываемые, а значит, контроллер скорее всего не сможет правильно использовать флеш-память.
Несмотря на это, более качественное тестирование показало улучшение производительности HDD с встроенным SSD. Однако дешёвая флеш-память, скорее всего, выйдет из строя намного быстрее, чем качественный HDD, поэтому гибридные накопители, вероятно, не стоят нашего внимания — индустрия производства накопителей гораздо сильнее заинтересована в SSD.
Прежде чем мы двинемся дальше, стоит упомянуть, что флеш-память — не единственная технология, используемая в твёрдотельных накопителях. Intel и Micron совместно изобрели систему под названием 3D XPoint. Вместо записи и стирания зарядов зарядов в ячейках для создания состояний 0 и 1, для генерации битов в этой системе ячейки изменяют своё электрическое сопротивление.
Intel рекламировала эту новую память под брендом Optane, и когда мы протестировали её, производительность оказалась выдающейся. Как и цена системы, но в плохом смысле. Накопитель Optane всего на 1 ТБ сегодня стоит более 1 200 долларов — в четыре раза больше, чем SSD такого же объёма на основе флеш-памяти.
Третьим и последним накопителем, который мы исследуем в следующей статье, будут оптические приводы.
Источник