Что значит палочка над комплексными числами

Комплексные числа

В математике кроме натуральных, рациональных и вещественных чисел имеется ещё один вид, называемый комплексными числами. Такое множество принято обозначать символом $ \mathbb $.

Рассмотрим, что из себя представляет комплексное число. Запишем его таким образом: $ z = a + ib $, в котором мнимая единица $ i = \sqrt <-1>$, числа $ a,b \in \mathbb $ вещественные.

Если положить $ b = 0 $, то комплексное число превращается в вещественное. Таким образом, можно сделать вывод, что действительные числа это частный случай комплексных и записать это в виде подмножества $ \mathbb \subset \mathbb $. К слову говоря также возможно, что $ a = 0 $.

Принято записывать мнимую часть комплексного числа как $ Im(z) = b $, а действительную $ Re(z) = a $.

Введем понятие комплексно-сопряженных чисел. К каждому комплексному числу $ z = a+ib $ существует такое, что $ \overline = a-ib $, которое и называется сопряженным. Такие числа отличаются друг от друга только знаками между действительной и мнимой частью.

Формы

Так сложилось в математике, что у данных чисел несколько форм. Число одно и тоже, но записать его можно по-разному:

  1. Алгебраическая $ z = a+ib $
  2. Показательная $ z = |z|e^ $
  3. Тригонометрическая $ z = |z|\cdot(\cos(\varphi)+i\sin(\varphi)) $

Далее с примерами решений вы узнаете как переводить комплексные числа из одной формы в другую путем несложных действий в обе стороны.

Изображение

Изучение выше мы начали с алгебраической формы. Так как она является основополагающей. Чтобы было понятно в этой же форме изобразим комплексное число на плоскости:

Видим, что $ a,b \in \mathbb $ расположены на соответствующих осях плоскости.

Комплексное число $ z = a+ib $ представляется в виде вектора $ \overline $.

Аргумент обозначается $ \varphi $.

Модуль $ |z| $ равняется длине вектора $ \overline $ и находится по формуле $ |z| = \sqrt $

Аргумент комплексного числа $ \varphi $ нужно находить по различным формулам в зависимости от полуплоскости, в которой лежит само число.

Вычислить сумму и разность заданных комплексных чисел:

$$ z_1 = 3+i, z_2 = 5-2i $$

Сначала выполним сложение. Для этого просуммируем соответствующие мнимые и вещественные части комплексных чисел:

$$ z_1 + z_2 = (3+i) + (5-2i) = (3+5)+(i-2i) = 8 — i $$

Аналогично выполним вычитание чисел:

$$ z_1 — z_2 = (3+i) — (5-2i) = (3-5)+(i+2i) = -2 + 3i $$

Ответ $$ z_1 + z_2 = 8 — i; z_1 — z_2 = -2 + 3i $$

Выполнить умножение и деление комплексных чисел:

$$ z_1 = 3+i, z_2 = 5-2i $$

$$ z_1 \cdot z_2 = (3+i) \cdot (5-2i) = $$

Просто на просто раскроем скобки и произведем приведение подобных слагаемых, так же учтем, что $ i^2 = -1 $:

$$ = 15 — 6i + 5i -2i^2 = 15 — i — 2\cdot(-1) = $$

$$ = 15 — i + 2 = 17 — i $$

Так, теперь разделим первое число на второе:

Суть деления в том, чтобы избавиться от комплексного числа в знаменателе. Для этого нужно домножить числитель и знаменатель дроби на комплексно-сопряженное число к знаменателю и затем раскрываем все скобки:

Разделим числитель на 29, чтобы записать дробь в виде алгебраической формы:

Пример 3
Ответ
$$ z_1 \cdot z_2 = 17 — i; \frac = \frac<13> <29>+ \frac<11><29>i $$

Для возведения в квадрат достаточно умножить число само на себя:

$$ z^2 = (3+3i)^2 = (3+3i)\cdot (3+3i) = $$

Пользуемся формулой для умножения, раскрываем скобки и приводим подобные:

$$ =9 + 9i + 3i\cdot 3 + 9i^2 = 9 + 18i — 9 = 18i $$

Получили ответ, что $$ z^2 = (3+i)^2 = 18i $$

В этом случае не всё так просто как в предыдущем случае, когда было возведение в квадрат. Конечно, можно прибегнуть к способу озвученному ранее и умножить число само на себя 7 раз, но это будет очень долгое и длинное решение. Гораздо проще будет воспользоваться формулой Муавра. Но она работает с числами в тригонометрической форме, а число задано в алгебраической. Значит, прежде переведем из одной формы в другую.

Вычисляем значение модуля:

Найдем чем равен аргумент:

$$ \varphi = arctg \frac<3> <3>= arctg(1) = \frac<\pi> <4>$$

Записываем в тригонометрическом виде:

Возводим в степень $ n = 7 $:

Преобразуем в алгебраическую форму для наглядности:

$$ = 3^7 \sqrt<2>^6 (1-i) = 3^7 \cdot 8(1-i) = $$

$$ = 2187 \cdot 8 (1-i) = 17496(1-i) $$

$$ z^2 = (3+i)^2 = 18i $$ $$ z^7 = 17496(1-i) $$

Пример 4
Возвести комплексное число $ z = 3+3i $ в степень: a) $ n=2 $ б) $ n=7 $
Решение

Представим число в тригонометрической форме. Найдем модуль и аргумент:

$$ \varphi = arctg \frac<0> <-1>+\pi = arctg 0 + \pi = \pi $$

Получаем: $$ z = (\cos \pi + i\sin \pi) $$

Используем знакомую формулу Муавра для вычисления корней любой степени:

Так как степень $ n = 3 $, то по формуле $ k = 0,1,2 $:

Пример 5
Извлечь корень $ \sqrt[3] <-1>$ над множеством $ \mathbb $
Решение

Решать будем по общей формуле, которую все выучили в 8 классе. Находим дискриминант $$ D = b^2 — 4ac = 2^2 — 4\cdot 1 \cdot 2 = 4-8 = -4 $$

Источник

Что такое комплексные числа

Первый урок по комплексным числам. Сегодня мы разберём:

Если же вас интересует тригонометрическая форма записи комплексного числа, либо извлечение корней из комплексных чисел — этим темам посвящены отдельные уроки.

Сегодня — лишь самое главное. Но не самое простое.:)

0. Краткая вводная

Когда-то нам хватало натуральных чисел:

Всё было прекрасно: «У тебя 5 бананов, у меня ещё 3 — итого у нас 5 + 3 = 8 бананов». Сумма двух натуральных чисел всегда даёт новое натуральное число (говорят, что операция сложения замкнута на множестве натуральных чисел).

Но вот на сцену выходит вычитание — и натуральных чисел стало недостаточно. Например разность 3 − 5 = −2 уже не будет натуральным. Так появились целые числа (натуральные, им противоположные и ноль):

Дальше к делу подключились операции умножения и деления. Да, произведение двух целых чисел всё ещё целое, но вот деление приводит к образованию дробей. Например, 1 : 2 или 5 : 4 уже нельзя записать целым числом. Так появилось множество рациональных чисел или множество дробей:

Это был настоящий триумф для древней математики, и в тот момент казалось, что ничего больше уже изобрести нельзя. Да и зачем?

Проблема пришла откуда не ждали. В какой-то момент классическое умножение «разрослось» до возведения в степень:

Тут-то и выяснилось, что возведение рационального числа в натуральную степень всё ещё будет рациональным числом. Но вот обратная операция — извлечение корня — выносит нас за пределы рациональных чисел:

\[\sqrt<2>=1,41421. \notin \mathbb\]

Так появилось множество действительных чисел — множество бесконечных десятичных дробей, которые могут быть периодическими (и тогда это обычное рациональное число) и непериодическими (такие числа называют иррациональными, и их неизмеримо больше).

Казалось бы: ну вот теперь точно всё! Что ещё нужно для счастья? Проблема в том, что на множестве действительных чисел нельзя извлечь даже самый простой квадратный корень из отрицательного числа:

Однако законы физики (особенно электродинамика и вообще всё, где есть слово «динамика») как бы намекали, что множество содержательных процессов протекает там, где привычные корни не извлекаются. А значит, следует расширить множество действительных чисел так, чтобы такие корни всё же извлекать.

И тут открылись врата в Ад.

1. Комплексная единица

Начнём с ключевого определения.

Определение. Комплексная единица — это число $i$, которое при возведении в квадрат даёт −1:

Очевидно, комплексная единица не является привычным нам действительным числом: $i\notin \mathbb$. Просто потому что квадрат действительного числа не может быть отрицательным.

Однако в остальном это такое же число, как и все остальные. Комплексные единицы можно складывать, умножать, их можно комбинировать с «нормальными» числами:

В последнем примере мы сгруппировали слагаемые и провели подобные — совсем как с многочленами. Нельзя напрямую сложить действительное число и комплексную единицу, поскольку сущность числа $i$ нам не ясна. Но привести подобные — всегда пожалуйста.

И это первое замечательное свойство комплексной единицы. По сути, работать с ней — всё равно что работать с многочленом. Просто вместо переменной $x$ теперь будет $i$. Ну и помним, что $<^<2>>=-1$, что ещё больше упрощает жизнь:

Обратите внимание: запись $1+i$ является окончательной, её нельзя упростить. Точно так же нельзя упростить многочлен $kx+b$, например. И тут мы плавно переходим к следующему пункту.

2. Стандартная форма записи комплексных чисел

А теперь всё по-взрослому.

Определение. Комплексное число — это любое число вида

где $a$ и $b$ — действительные числа. При этом число $a$ называют действительной частью комплексного числа (пишут $a=\operatorname\left( z \right)$), а число $b$ — мнимой частью (пишут $b=\operatorname\left( z \right)$).

Часто комплексные числа обозначают именно буквой $z$. Хотя это совсем необязательно. И выглядит это примерно так:

\[\begin & z=5+3i \\ & \operatorname\left( z \right)=5 \\ & \operatorname\left( z \right)=3 \\ \end\]

Запись вида $z=a+bi$ называется стандартной формой записи комплексного числа. Всякое действительно число можно представить в виде комплексного с нулевой мнимой частью:

\[\begin & 5=5+0\cdot i \\ & x=x+0\cdot i\left( \forall x\in \mathbb \right) \\ \end\]

И напротив: существуют «чисто мнимые» числа, у которых вообще нет действительной части. Та же комплексная единица, например:

\[\begin i &=0+1\cdot i \\ 35i &=0+35\cdot i \\ \end\]

Таким образом, действительные числа являются частным случаем комплексных. Подобно тому как рациональные числа являются частным случаем действительных (в конце концов, рациональные числа — те же десятичные дроби, но с дополнительным условием: они периодические).

2.1. Равенство комплексных чисел

Важно понимать, что пара чисел $a$ и $b$ однозначно задаёт комплексное число. Не существует двух разных представлений одного и того же числа $z$.

В самом деле, пусть некоторое число записано двумя способами:

Соберём все действительные слагаемые слева, а мнимые — справа:

Слева мы видим действительное число. Значит, справа тоже должно стоять действительное число. Единственная ситуация, в которой это возможно:

Получается, что справа от знака равенства стоит ноль. Следовательно, слева тоже ноль:

Следовательно, исходные записи совпадают.

Поэтому имеет смысл следующее определение.

Определение. Два комплексных числа равны друг другу тогда и только тогда, когда равны их действительные части, а также равны их мнимые части:

Если хотя бы одна из частей не равна, то и сами числа не равны.

Поскольку от перестановки слагаемых сумма не меняется (сложение чисел — настолько суровая операция, что какие-то там «комплексные единицы» никак не нарушают его коммутативности), мы можем записать:

А вот перестановка мнимой и действительной части (если эти части разные) немедленно ведёт к нарушению равенства:

Подобно тому как точки с координатами (5; 7) и (7; 5) — это разные точки координатной плоскости, вот так и числа $5+7i$ и $7+5i$ — это разные числа. Помните об этом.:)

К координатной плоскости мы ещё вернёмся. А пока определим правила сложения и вычитания комплексных чисел.

3. Сложение и вычитание комплексных чисел

Выше мы проводили аналогию между комплексными числами и многочленами. Идём по этому пути дальше и вспоминаем, что многочлены можно складывать, группируя слагаемые и приводя подобные:

Точно так же можно определить и сложение (да и вычитание) двух комплексных чисел. Всё просто:

Другими словами, при сложении комплексных чисел отдельно складываются их действительные части и отдельно — мнимые. То же самое для вычитания.

Не нужно учить эти формулы. Дальше будут формулы умножения и деления — они ещё сложнее. Нужно понять ключевую идею: мы работаем с комплексными числами точно так же, как с многочленами. С небольшим дополнением: все степени комплексной единицы выше первой «сжигаются» прямо по определению самой единицы:

Небольшое замечание. В отличие от математики 5—6 классов, в серьёзной «взрослой» алгебре нет такого понятия как «вычитание». Зато есть понятие противоположного элемента и алгебраической суммы:

Всё это в полной мере относится и к комплексным числам. Там тоже есть противоположные:

\[z=a+bi\Rightarrow -z=\left( -a \right)+\left( -b \right)\cdot i\]

Есть ноль (нейтральный элемент по сложению):

\[\begin 0 & =0+0\cdot i \\ z & =a+bi \\ z+0 & =\left( a+0 \right)+\left( b+0 \right)\cdot i= \\ & =a+bi=z \end\]

В общем, множество комплексных чисел — это абсолютно «нормальное» множество с понятной операцией сложения. Буквально через пару минут мы определим и умножение, но сначала давайте всё-таки запишем определение самого множества комплексных чисел.

Определение. Множество комплексных чисел — это множество чисел вида $z=a+bi$, где $a$ и $b$ — действительные числа, $<^<2>>=-1$ — комплексная единица.

Записывается это так:

Не пугайтесь, когда увидите подобную запись где-нибудь в учебнике алгебры. По сути, это краткая запись всего того, о чём мы говорили выше. Ничего нового мы здесь не узнали.

А вот что действительно представляет интерес — сейчас узнаем.:)

4. Геометрическая интерпретация комплексных чисел

Итак, комплексное число — это просто конструкция вида $a+bi$. И такая конструкция однозначно определяется парой действительных чисел $\left( a;b \right)$. Такую пару ещё называют упорядоченной. К примеру, (3; 17) и (17; 3) — это разные пары, которые задают разные комплексные числа.

Такие упорядоченные пары удобно рассматривать как координаты точек. По горизонтали (ось абсцисс) мы будем отмечать действительную часть числа, а по вертикали (ось ординат) — мнимую.

Определение. Комплексная плоскость — декартова система координат, где по горизонтали отмечается действительная часть комплексного числа, а по вертикали — мнимая.

Рассмотрим несколько примеров. Отметим на комплексной плоскости числа:

Как видим, привычные нам действительные числа располагаются по горизонтали — на оси абсцисс. Они состоят только из действительной части. Таким числом является $<_<3>>=4+0\cdot i$ (отмечено красным).

А ещё есть «чисто мнимые» комплексные числа, у которых вообще нет действительной части. Они располагаются по вертикали — на оси ординат. Таким числом является, например, $<_<4>>=0+2i$ (отмечено фиолетовым).

4.1. Ещё раз о сложении и вычитании

Такое представление чисел — в виде точек на комплексной плоскости — называется геометрической интерпретацией. Числа в таком виде удобно складывать и вычитать. По сути, всё сводится к сложению обычных векторов.

Допустим, мы хотим сложить два числа:

Отметим эти числа на комплексной плоскости, построим векторы из начала координат с концами в отмеченных точках, а затем просто сложим эти векторы (по правилу треугольника или параллелограмма — как пожелаете):

Координаты новой точки: (6; 2). Следовательно, сумма равна:

Аналогичный результат можно получить и алгебраически:

Как видим, алгебраические выкладки заняли гораздо меньше времени и места. Уже хотя бы потому что не потребовалось чертить систему координат.:)

Зачем же тогда нужна комплексная плоскость и геометрическая интерпретация? Всё встанет на свои места буквально через пару уроков, когда мы рассмотрим тригонометрическую форму записи комплексных чисел, а также будем извлекать из этих чисел корни.

А чтобы подготовиться к этим урокам, рассмотрим ещё два ключевых определения.

5. Комплексно-сопряжённые и модуль числа

Для начала вспомним школьную алгебру. Работа с многочленами, 7-й класс:

Определение. Выражения вида $a+b$ и $a-b$ называются сопряжёнными. Их произведение

называется разностью квадратов и является одной из формул сокращённого умножения.

Важное замечание: в роли $a$ и $b$ может выступать что угодно. Например, в 8-м классе мы использовали сопряжённые для избавления от иррациональности в знаменателе:

В математических классах с помощью сопряжённых искали обратные числа, чтобы затем решать сложные показательные и логарифмические уравнения:

Теперь настало время комплексных чисел. В них тоже можно ввести понятие сопряжённых.

5.1. Комплексно-сопряжённые

Определение. Пусть дано комплексное число $z=a+bi$. Тогда комплексно-сопряжённым называется число

Комплексно-сопряжённые числа отмечаются чертой сверху.

Рассмотрим несколько примеров:

Видим, что комплексно-сопряжённое к «чисто мнимому» числу есть число, ему противоположное. А комплексно-сопряжённое к действительному числу есть само это число.

Зачем нужны комплексно-сопряжённые? Вспомним всё ту же формулу разности квадратов:

Итак, произведение числа на комплексно-сопряжённое даёт сумму квадратов действительной и мнимой части. Это ключевое свойство комплексно-сопряжённых, и оно позволяет нам рассмотреть следующее определение.

5.2. Модуль комплексного числа

Снова вспомним школьную алгебру. Модуль действительного числа определяют так:

\[\left| a \right|=\left\ < \begin& 1\cdot a,\quad a \gt 0 \\ & 0\cdot a,\quad a=0 \\ & \left( -1 \right)\cdot a,\quad a \lt 0 \\\end \right.\]

Ключевая идея: модуль числа — это всегда неотрицательная величина, равная расстоянию от точки, соответствующей этому числу, до начала отсчёта. Но всё это происходит на числовой прямой. На комплексной плоскости к делу подключается теорема Пифагора.

Определение. Модуль комплексного числа — это величина, которая обозначается $\left| z \right|$ и считается по формуле:

Вновь обратимся к геометрической интерпретации:

Красным отмечен прямоугольный треугольник с катетами $\left| a \right|$ и $\left| b \right|$. По теореме Пифагора его гипотенуза как раз равна $\left| z \right|$:

Таким образом, модуль комплексного числа — это расстояние от начала координат до точки, соответствующей этому числу. В частности, при $b=0$ мы получаем классическое определение модуля для действительных чисел:

\[b=0\Rightarrow \left| z \right|=\sqrt<<^<2>>>\]

Получается, что на множестве комплексных чисел нельзя ввести привычные нам понятия «больше» или «меньше». Поскольку каждое число характеризуется двумя независимыми параметрами (действительной и мнимой частью), нет универсальной меры, нет отношения порядка.

Можно считать это фундаментальным законом природы. Когда мы держим в голове больше одного параметра, нет больше универсального критерия успеха:

  • Поменяли работу — на новой зарплата выше, но коллектив хуже. Что важнее?
  • Ушли из универа — теперь есть время на работу, но нет формального образования. И вновь: что важнее?

Оценка одного и того же события будет меняться в зависимости от настроения и наших предпочтений.

Модуль числа нам пригодится в следующем уроке. А вот комплексно-сопряжённые мы будем применять уже сейчас.

6. Умножение и деление комплексных чисел

Комплексные числа можно не только складывать и вычитать, но даже умножать и делить друг на друга.

6.1. Умножение

С умножением ничего особенного.

Определение. Пусть даны два комплексных числа: $<_<1>>=a+bi$ и $<_<2>>=c+di$. Тогда их можно умножить:

\[\begin <_<1>>\cdot <_<2>> & =\left( a+bi \right)\left( c+di \right)= \\ & =ac+bc\cdot i+ad\cdot i+bd\cdot <^<2>>= \\ & =\left( ac-bd \right)+\left( ad+bc \right)\cdot i\end\]

Как видим, произведение комплексных чисел вновь даёт комплексное число.

Как и в случае со сложением, не нужно учить эти формулы наизусть. Лучше просто потренироваться и понять сам механизм:

\[\begin \left( 1-2i \right)\cdot \left( 3+i \right) & =3-6i+i-2<^<2>>= \\ & =3-5i-2\cdot \left( -1 \right)= \\ & =5-5i \end\]

Достаточно решить 10—15 таких примеров — и никакие специальные формулы и определения вам больше не понадобятся. То же самое и с делением.

6.2. Деление

Финальный бросок — попробуем разделить одно комплексное число на другое. Разумеется, делитель не должен быть нулём, иначе частное не определено.

Определение. Пусть даны два комплексных числа: $<_<1>>=a+bi$ и $<_<2>>=c+di$, причём $\left| <_<2>> \right|\ne 0$. Тогда их можно разделить:

Частное комплексных чисел вновь будет комплексным числом.

Саму формулу не нужно запоминать. Достаточно лишь отметить для себя, что мы умножили числитель и знаменатель дроби на комплексно-сопряжённое к знаменателю. Само деление можно выполнять напролом:

Тем не менее, даже после основательной тренировки умножение и особенно деление комплексных чисел остаётся трудоёмкой операцией, где можно допустить множество ошибок. Поэтому для таких операций (а также для кое-чего гораздо более серьёзного) математики придумали другую форму записи комплексных чисел — тригонометрическую. С ней мы и познакомимся на следующем уроке.:)

Источник

Читайте также:  Что значит наиболее ликвидные активы
Оцените статью
Пример 6
Решить квадратное уравнение $ x^2 + 2x + 2 = 0 $ над $ \mathbb $
Решение