- Отделение корней
- Реферат: Отделение корней. Графический и аналитический методы отделения корней
- Содержание
- 1. Отделение корней. 3
- 2. Графический метод. 4
- 3. Аналитический метод (табличный или шаговый). 5
- 4. Метод половинного деления (Дихотомии). 9
- 1. Отделение корней
- 2. Графический метод
- 3. Аналитический метод (табличный или шаговый).
- Что значит отделение корней
Отделение корней
На данном этапе определяются те интервалы области изменения переменной x, в каждом из которых расположен один и только один корень уравнения (3.1). По сути дела на этом этапе определяются грубые приближения значений x с погрешностью, определяемой длиной каждого найденного интервала. Полностью автоматизировать процесс отделения корней, пожалуй, невозможно, так как в нем обязательно присутствует элемент субъективного, интуитивного подхода к решению задачи. Иногда, например, интервал, в котором расположен корень, удается получить из физической сущности решаемой задачи.
При выполнении этого этапа с использованием ЭВМ обычно проводится «табулирование» функции F(x, a1, a2, . ak), т.е. построение таблицы ее значений при различных значениях x, следующих друг за другом с некоторым шагом h:
x | F(x) |
x1 | F1 |
x2 | F2 |
. . . | . . . |
xn | Fn |
Например, таблица значений функции x 2 — 12 ln½x½ + 6 sin xна промежутке [1,10] c шагом h = 1 имеет вид:
x | F(x) |
1.0 | 6.05 |
2.0 | 0.72 |
3.0 | — 3.99 |
4.0 | — 6.01 |
5.0 | — 1.03 |
6.0 | 11.75 |
7.0 | 28.42 |
8.0 | 43.74 |
9.0 | 55.79 |
10.0 | 67.72 |
В качестве границ искомых интервалов выбираются такие соседние значения x, в которых соответствующие значения F(x) имеют разные знаки, так как изменение знака функции на некотором интервале означает в силу ее непрерывности, что где-то в пределах этого интервала график функции пересекает ось абсцисс, т.е. уравнение F(x) = 0 имеет корень. В частности, на основании данных из приведенной выше таблицы можно сделать вывод, что уравнение x 2 — 12 ln½x½ + 6 sin x = 0 на промежутке [1,10] имеет по крайней мере два корня: в интервале (2,3) и в интервале (5,6).
|
При выполнении этого этапа нужно проявлять определенную осторожность: во-пеpвых, одинаковые знаки функции F на концах интервала (xi, xi+1) не означают, что на этом интервале нет корней — их может быть, например, два; во-втоpых, при разных знаках на концах интервала здесь может оказаться не один корень, а три или, например, пять.
В приводимой на рис.3.1 схеме алгоритма отделения корней использованы следующие обозначения:
xН, xК — соответственно левая и правая границы промежутка табулирования функции F(x);
x — текущая точка табулирования;
;
В0, В1 — знаки функции F(x) соответственно в предыдущей и текущей точках табулирования.
В соответствии с данной блок-схемой производится не просто табулирование функции, а, кроме того, анализ знака функции в каждой новой точке и вывод сообщения при его изменении.
Источник
Реферат: Отделение корней. Графический и аналитический методы отделения корней
Название: Отделение корней. Графический и аналитический методы отделения корней Раздел: Рефераты по информатике Тип: реферат Добавлен 11:03:33 16 июня 2011 Похожие работы Просмотров: 2994 Комментариев: 22 Оценило: 8 человек Средний балл: 4.5 Оценка: 5 Скачать |
Из рис.1 видно, что корень находится на отрезке [1,2]. В качестве приближенного значения этого корня можно взять значение х=1.5. Если взять шаг по оси Ох меньше, то и значение корня можно получить более точное. |
3. Аналитический метод (табличный или шаговый).
Для отделения корней полезно помнить следующие известные теоремы:
1) если непрерывная функция f(x) принимает значения разных знаков на концах отрезка [a,b], т.е. f(a)f(b) 0, значит корня на отрезке [0;0.5] нет.
f(0.5)f(1) 0, значит корня на отрезке [0.5;0.75] нет.
Источник
Что значит отделение корней
1. Приближенное решение нелинейных уравнений
Пусть дано уравнение с одним неизвестным
, (1.1)
где f ( x ) — заданная алгебраическая или трансцендентная функция.
Функция называется алгебраической, если для получения её значения нужно выполнить арифметические операции и возведение в степень с рациональным показателем. Примеры трансцендентных функций — показательная , логарифмическая, тригонометрические, обратные тригонометрические.
Решить уравнение — значит найти все его корни, то есть те значения х , которые обращают уравнение в тождество, или доказать, что корней нет.
В общем случае не существует формул, по которым определяются точные значения корней уравнения (1.1). Для отыскания корней используют приближенные методы, при этом корни находятся с некоторой заданной точностью ε . Это означает, что если x — точное значение корня уравнения, а x ’ — его приближенное значение с точностью ε , то | x — x ’ | ≤ ε . Если корень найден с точностью ε , то принято писать x = x ± ε .
Будем предполагать, что уравнение (1.1) имеет лишь изолированные корни, то есть для каждого корня существует окрестность, не содержащая других корней этого уравнения.
Приближенное решение уравнения состоит из двух этапов:
1. Отделение корней, то есть нахождение интервалов из области определения функции f ( x ), в каждом из которых содержится только один корень уравнения (1).
2. Уточнение корней до заданной точности.
Отделение корней можно проводить графически и аналитически.
Для того , чтобы графически отделить корни уравнения (1.1), строят график функции y = f ( x ). Абсциссы точек его пересечения с осью Ox есть действительные корни уравнения (рис. 1). Практически бывает удобнее заменить уравнение (1.1) равносильным ему уравнением
, (1.2)
где Φ( x ) и Ψ( x ) — более простые функции, чем f ( x ). Абсциссы точек пересечения графиков функций y = Φ( x ) и y = Ψ( x ) дают корни уравнения (1.2), а значит и исходного уравнения (1.1) (рис.2).
Аналитическое отделение корней основано на следующей теореме: если непрерывная на отрезке [ a , b ] функция y = f ( x ) принимает на концах отрезка значения разных знаков, т.е. f ( a )· f ( b ) f ( x ) = 0; если при этом производная f ’ ( x ) сохраняет знак внутри отрезка [ a , b ], то корень является единственным.
Уточнение корней заключается в сужении интервала изоляции корня и выполняется одним из специальных методов. Рассмотрим самый простой из них — метод половинного деления.
Пусть корень отделён и принадлежит отрезку [ a , b ]. Находим середину отрезка [ a , b ] по формуле
Если f ( c ) = 0, то с — искомый корень. Если f ( c ) ≠ 0, то в качестве нового отрезка изоляции корня [ a 1 , b 1 ] выбираем ту половину [ a , c ] или [ c , b ], на концах которой f ( x ) принимает значения разных знаков. Другими словами, если f ( a ) ∙ f ( c ) a , c ], если f ( a ) ∙ f ( c ) — отрезку [ c , b ]. Полученный отрезок снова делим пополам, находим c1 ,
вычисляем f ( c 1 ), выбираем отрезок [ a 2 , b 2 ] и т.д. Длина каждого нового отрезка вдвое меньше длины предыдущего, то есть за n шагов отрезок сократится в 2 n раз. Как только будет выполнено условие
то в качестве приближенного значения корня, вычисленного с точностью ε , можно взять
Пример . Пусть требуется решить уравнение
с точностью ε = 0,0001. Отделим корень графически. Для этого преобразуем уравнение к виду
и построим графики функций (рис. 4):
Из рисунка видно, что абсцисса точки пересечения этих графиков принадлежит отрезку [0; 1].
Подтвердим аналитически правильность нахождения отрезка изоляции корня. Для отрезка [0; 1] имеем:
. Следовательно, корень отделён правильно.
Уточнение корня выполним методом половинного деления.
Корень принадлежит отрезку
Корень принадлежит отрезку
Корень принадлежит отрезку
Источник