Что значит односторонние углы

Внутренние односторонние углы

Еще один вид углов, образованных при пересечении двух прямых секущей — внутренние односторонние углы.

Две прямые разбивают плоскость на части. Та часть, которая лежит между прямыми — внутренняя. Углы, которые расположены в этой части, так и называются — внутренние. Внутренние односторонние углы — это углы, которые лежат внутри между прямыми по одну сторону от секущей (поэтому они так и называются).

При пересечении двух прямых секущей образуется две пары внутренних односторонних углов.

∠1 и ∠2

∠3 и ∠4

— внутренние односторонние углы при прямых a и b и секущей c.

Наибольший интерес вызывают внутренние накрест лежащие углы, образованные параллельными прямыми.

Свойство параллельных прямых

Если две параллельные прямые пересечены третьей прямой, то сумма внутренних односторонних углов равна 180º.

Если a ∥ b, то

∠1 + ∠2 = 180º

(как внутренние односторонние при a ∥ b и секущей c).

Признак параллельных прямых

Если сумма внутренних односторонних углов равна 180º, то прямые параллельны.

∠3 + ∠4 =180º

А так как эти углы — внутренние односторонние при a и b и секущей c,

то a ∥ b (по признаку параллельных прямых).

Могут ли быть внутренние односторонние углы равны?

Да. Внутренние односторонние углы равны, если прямые параллельны, а секущая им перпендикулярна.

∠1 и ∠2 — внутренние односторонние углы при прямых a и b и секущей c

∠1 = ∠2

тогда и только тогда, когда a ∥ b, а секущая c перпендикулярна и прямой a, и прямой b.

Источник

Внутренние односторонние углы — теория, правило и свойства

  • Углы по определению
  • Доказательство теоремы
  • Следствие из свойства прямых
  • Построение параллелограмма

Углы по определению

Прямая, которая пересекает другие линии, идущие параллельно друг другу, образует не только внутренние, но и внешние углы. Один из них дополняет другой до 180 градусов. Это свойство можно доказать как для смежных, так и односторонних внутренних, каждый из которых имеет соответственный внешний.

Углы, расположенные на одной стороне от секущей, пересекающей 2 линии, идущие параллельно, называются накрест лежащими. Они отличаются от односторонних, образуя с ними смежные. В сумме они составляют 180 градусов.

Отрезок между линиями, проведенными параллельно между собой, можно обозначить AB. Если представить, что AB=0, то параллельные будут совпадать, а соответственные углы и односторонние станут смежными. Их сумма должна быть 180 градусов.

Доказательство теоремы

Прямые являются параллельными, если сумма односторонних внутренних углов равна 180. Нужно доказать теорему по исходным данным. Секущая АВ является линией пересечения параллельных а и b.

Для доказательства теоремы можно допустить, что линии не являются параллельными, значит они пересекают друг друга в определенной точке С. Секущая АВ образует с а и b треугольник АВС, поскольку точка С лежит в одной из двух плоскостей относительно АВ. На линии а расположена сторона треугольника АС, а на b — ВС.

Если в противоположной полуплоскости отложить точку С1, то она образует с АВ другой треугольник АВС1. При этом по построению углы ВАС и АВС1 равны. Сумма САВ и СВА составляет 180, что указано в условии задачи. Следовательно, сторона АС1 принадлежит а, аналогично, ВС1 — линии b.

Точка пересечения С линий а и b принадлежит этим прямым. Вместе с тем точка С1 не может лежать на каждой из них, поскольку она находится в полуплоскости, где линии по построению не пересекаются.

Если в сумме односторонние углы составляют 180, то треугольника АВС1 не существует, значит а || b.

Следствие из свойства прямых

На прямую а может быть опущен единственный перпендикуляр из любой точки А, которая не принадлежит данной линии. Доказательство утверждения состоит из следующих шагов:

  • Вначале следует отметить на прямой а произвольную точку, обозначив ее С1.
  • Далее можно провести через С1 линию с, перпендикулярную а.
  • Затем через точку А нужно начертить АС2, которая параллельна с.
  • После этого следует предположить о существовании перпендикуляра, который вместе с АС2 пересекает линию а с образованием третьего отрезка АС3.
  • Поскольку из точки А нельзя проводить перпендикуляр АС3 и править треугольник АС2С3, дополняя его другим перпендикулярным отрезком, то согласно свойству параллельных прямых АС2||АС3.

    Итак, отрезок АВ является единственным перпендикуляром, проходящим через точку А.

    Построение параллелограмма

    Если односторонние углы не прямые, то один из них является острым, а другой — тупым, то есть меньшим или большим по величине. Если через каждый из них провести биссектрисы, то они должны пересечь противоположные стороны в определенных точках. Для этого достаточно отложить отрезки на параллельных линиях, равные AB, используя циркуль.

    Секущая и отрезки, принадлежащие проведенным биссектрисам, образуют 2 треугольника вместе с параллельными. Напротив большего угла будет находиться биссектриса, отсекающая наибольший отрезок. Это подтверждает теорема о соотношении между углами и сторонами разностороннего треугольника.

    Соединив точки пересечения биссектрис с параллельными прямыми, можно построить четырехугольник ABCD. Чтобы доказать, что полученная фигура является параллелограммом, достаточно учесть следующее:

  • По построению AB=BD=AD.
  • Следовательно, AB=CD.
  • Точки C и D равноудалены от A и B.
  • Отрезки AB и CD параллельны.
  • Полученная фигура ABCD представляет собой параллелограмм, так как ее стороны попарно равны и параллельны.

    Отложив от A и B равноудаленные точки C и D, можно получить линию CD, которая параллельна AB. Тогда CD — отрезок, перпендикулярный параллельным прямым BC и AD. Поскольку все отрезки полученной фигуры ABCD пересекаются перпендикулярно, то она является прямоугольником по построению.

    Доказательство теоремы позволяет определять, какой является величина второго из двух внутренних односторонних углов при параллельных прямых и секущей. Решение задач по геометрии позволяет найти их градусную меру и в зависимости от разности между ними.

    Источник

    Углы при параллельных прямых и секущей — виды и свойства

    • Изучаемый геометрический объект
      • Векторное представление
      • Другие формы уравнений
    • Взаимное расположение
      • Две прямые
      • Три прямые
    • Секущая и углы
    • Методы вычисления
    • Пример решения задачи

    Изучаемый геометрический объект

    Прежде чем рассматривать углы, которые образуются в результате различного взаимного расположения прямых на плоскости, следует подробно изучить сам геометрический объект. Любая прямая линия представляет собой набор точек в пространстве любой мерности, каждая из которых может быть получена из предыдущей путем ее переноса на вектор, имеющий конкретное направление.

    Рассматриваемый объект является одномерным, то есть он имеет лишь один единственный размер, который отличен от нуля. Прямая — это бесконечная линия, любые две точки на которой отсекают отрезок определенной длины.

    Векторное представление

    Определение прямой говорит о том, что для универсального ее математического описания следует воспользоваться понятием вектора. Под ним в математике подразумевают направленный отрезок, имеющий начало и конец. В двумерном пространстве любой вектор представляется набором двух чисел, например, a (a1, a2). Построить его можно следующим образом:

  • Необходимо начало вектора расположить в точке (0, 0) (пересечение осей абсцисс и ординат в декартовой системе).
  • Конец направленного отрезка помещается в точку с координатами (a1, a2).
  • Начало и конец соединяются так, что стрелка (направление) указывается в точку (a1, a2).

    Самостоятельно вектор не может задать прямую, поскольку существует бесконечное множество объектов a (a1, a2), которые получаются с помощью параллельного переноса их по всей плоскости. Необходима фиксированная точка, чтобы привязать начало направленного отрезка. Так образуется прямая линия. Ее векторное уравнение может быть записано в следующем виде:

    A (x, y) = A0 (x0, y0) + alfa*(a1, a2).

    Здесь A (x, y) — произвольная точка линии, A0 (x0, y0) — фиксированная точка на ней, (a1, a2) — координаты вектора, который называется направляющим, alfa — любое рациональное число, которое показывает, на какую долю направленного отрезка (a1, a2) следует переместить A0 (x0, y0), чтобы попасть в A (x, y).

    Другие формы уравнений

    Векторное уравнение прямой является неявным по отношению к координатам x и y. Для одних задач его удобно использовать, для других же следует применять иные формы записи. Одной из них является параметрическая. Ее можно записать так:

    Этой формой удобно пользоваться для определения конкретных координат x и y. Если из этой системы равенств выразить параметр alfa, то можно получить симметричное уравнение прямой:

    Наконец, если представить это выражение таким образом, чтобы y был выражен, как функция от x, то получится общее представление прямой линии в двумерной системе координат:

    y = a2/a1*x + (y0-a2/a1*x0).

    Эта формула известна любому школьнику, поскольку основное внимание при изучении геометрических свойств рассматриваемого одномерного объекта в школах уделяется именно ей. Зная, как перевести один вид уравнения прямой в другой, можно выполнять соответствующие преобразования для решения конкретных задач.

    Взаимное расположение

    Рассматривая вопрос параллельных углов, следует изучить все возможные варианты расположения на плоскости прямых линий. Количество ситуаций зависит от числа присутствующих геометрических объектов, а также от размерности координатной системы.

    Две прямые

    На плоскости существует три разных варианта расположения двух прямых относительно друг друга. К ним относятся следующие:

  • Совпадение. Два объекта могут иметь разные направляющие вектора и фиксированные точки, но при этом будут накладываться друг на друга. Чтобы это проверить, необходимо взять произвольные две точки, которые принадлежат одной линии, и подставить их координаты в уравнение для другой. Если равенство в обоих случаях будет верным, то прямые являются идентичными.
  • Параллельность. В этом случае ни одна точка одной прямой не принадлежит другой. Однозначным и достаточным доказательством параллельности является возможность выразить направляющий вектор одного объекта, через направленный отрезок другого путем его умножения на какое-либо рациональное число.
  • Пересечение. Обе прямые имеют одну общую точку. Чтобы ее найти, следует решить систему уравнений. Для этого удобно воспользоваться общей формулой выражения для прямых.

    Три прямые

    Когда на плоскости имеются три прямых, то количество вариантов их взаимного расположения возрастает. Возможные следующие случаи:

  • Пересечение в одной точке.
  • Параллельность двух, которые пересекаются третьей.
  • Все три параллельны друг другу.
  • Каждая пересекает каждую так, что образуются три точки пересечения.

    Для определения всех этих ситуаций следует проводить геометрический анализ с применением уравнений разных форм представления прямых. Случай номер 2 является наиболее интересным, поскольку в результате такого взаимного расположения образуется набор специальных углов.

    Секущая и углы

    В школьном курсе геометрии изучение прямых и секущей имеет особый интерес. В результате такого расположения одномерных объектов получаются несколько углов, обладающих специальными свойствами. Полученные выводы используются для решения не только теоретических, но и практических вопросов.

    Выделяют три типа углов, образующихся при пересечении секущей двух параллельных линий:

    • накрест лежащие;
    • односторонние;
    • соответственные.

    Один из накрест лежащих углов расположен во внутренней области параллельных линий с одной стороны от секущей, второй же лежит во внешней области с другой стороны. Поскольку секущая пересекает каждую параллельную, образуется четыре пары рассматриваемых углов, которые лежат друг относительно друга накрест. Попарно эти углы равны. Две пары из них являются тупыми, а две — острыми. Особый случай составляют вертикальные прямые углы.

    Односторонние — это такие углы, которые бывают между параллельными линиями и только с одной стороны от секущей (отсюда их название). Причем один из них образован одной параллельной прямой, а другой относится к другой параллельной линии. Они в общем случае не равны друг другу, поскольку один является острым, а другой тупым. Однако если секущая перпендикулярна параллельным прямым, то односторонние углы будут составлять 90 градусов. Их важное свойство состоит в том, что в сумме всегда получается 180 градусов. В рассматриваемом расположении одномерных объектов существует лишь две пары этих углов.

    Соответственные углы при параллельных прямых лежат по одну сторону от секущей, но по разные стороны от каждой параллельной прямой. Они также являются смежными. Их существует четыре пары, которые попарно одинаковы. Их сумма в каждой паре всегда равна 180 градусам.

    Следует запомнить, что соответственные углы всегда лежат по одну сторону от секущей. В указанном расположении прямых можно найти еще четыре пары смежных углов, которые, однако, будут располагаться по разные стороны от секущей и по одну сторону от параллельной линии. Они соответствующими не являются.

    Методы вычисления

    Зная значение любого из накрест лежащих, односторонних и соответственных углов, можно найти величины всех остальных, воспользовавшись их свойствами. Для проведения вычислений проще всего воспользоваться векторной формой представления прямых.

    Пусть существует две параллельных линии, которые заданы следующим образом:

    • A (x, y) = A0 (x1, y1) + k*(a1, a2);
    • B (x, y) = B0 (x2, y2) + w*(b1, b2).

    Секущая задается векторным уравнением: C (x, y) = С0 (x3, y3) + l*(c1, c2). Для расчета угла пересечения любых двух прямых необязательно искать их общую точку, достаточно воспользоваться свойствами умножения направляющих векторов. Они могут перемножаться двумя различными способами:

    Пусть следует найти угол пересечения прямых A и C. Для скалярного произведения можно записать: ((a1, a2)*(c1, c2)) = a1*c1 + a2*c2 = ((a1)^2+(a2)^2)^0,5*((c1)^2+(c2)^2)^0,5*cos (teta). Откуда получается неизвестный угол teta:

    teta = arccos ((a1*c1 + a2*c2)/(((a1)^2+(a2)^2)^0,5*((c1)^2+(c2)^2)^0,5)).

    Другой способ определения teta заключается в применении векторного произведения. Получается следующее выражение: [(a1, a2)*(c1, c2)] = a1*c2 — a2*c1 = ((a1)^2+(a2)^2)^0,5*((c1)^2+(c2)^2)^0,5*sin (teta). Тогда teta может быть вычислен по формуле:

    teta = arcsin ((a1*c2 — a2*c1)/(((a1)^2+(a2)^2)^0,5*((c1)^2+(c2)^2)^0,5)).

    Вычислить соответствующие функции арксинуса или арккосинуса можно с использованием инженерного калькулятора. Как только известен угол пересечения секущей и параллельной прямых, остальные углы находятся с помощью добавления или вычитания его из 180 градусов, согласно их свойствам.

    Пример решения задачи

    Для наглядной демонстрации использования методов вычисления всех типов углов при параллельных прямых полезно решить задачу. Пусть одна из параллельных линий имеет уравнение: y = -2*x + 1. А ее секущая выражается равенством y = x. Необходимо найти значение углов для каждой пары трех типов.

    Прежде чем перейти к использованию скалярного или векторного произведения, следует найти направляющие отрезки для каждой из прямой. Сначала каждую из них нужно записать в параметрической форме:

    k = (y-1)/1 и k = (x-0)/-0.5 ==>

    Откуда получаются координаты направляющего вектора: (-0,5, 1). Проведение аналогичных преобразований для второй линии приводит к ее направляющему отрезку с координатами (1, 1).

    Воспользовавшись формулой для угла teta через скалярное произведение, можно получить следующий результат:

    teta = arccos ((-0,5*1 + 1*1)/(((-0,5)^2+(1)^2)^0,5*((1)^2+(1)^2)^0,5)) = 71,6 градуса.

    Тогда накрест лежащие углы составят 71,6 градуса, а односторонние и соответствующие будут равны 71,6 и 108,4 градуса (180−71,6).

    Знание уравнений прямых и умение производить операции умножения векторов позволяет вычислять любые типы углов, которые образуются при пересечении параллельных прямых секущей линией. Подобные расчеты можно проводить не только в двумерном, но также в трехмерном пространстве.

    Источник

    Читайте также:  Что значит агитационные плакаты
  • Оцените статью