- Класс напряжения
- Структура классов напряжения
- Электрические сети классифицируются
- Полезное
- Смотреть что такое «Класс напряжения» в других словарях:
- Класс напряжения
- Содержание
- Необходимость применения различных классов напряжения
- Классификация классов напряжения
- Комментарии к вопросу о классах напряжения
- Учёт режима работы нейтрали
- Повышенное напряжение базисного узла
- Цветовое обозначение классов напряжения
Класс напряжения
Класс напряжения — это значение напряжения, которое используется в электросетях для передачи электроэнергии к потребителям. В зависимости от классификации электрических сетей изменяется и класс напряжения.
Для повышения эффективности распределения электроэнергии и снижения потерь при передаче, воздушные и кабельные линии электропередачи разбивают на участки с разными классами напряжения. В зависимости от классификации электрических сетей изменяется и класс напряжения. При модернизации электрических сетей, энергетические компании стараются повысить класс напряжения, чтобы уменьшить расходы и потери при транспортировке электроэнергии к потребителю.
Структура классов напряжения
- Ультравысокий класс напряжения – от 1000 кВ.
- Сверхвысокий класс напряжения – от 330 кВ до 750 кВ;
- Высокий класс напряжения – от 110 кВ до 220 кВ;
- Средний класс напряжения – от 1 кВ до 35 кВ;
- Низший класс напряжения – до 1 кВ;
Электрические сети классифицируются
- Магистральные сети (гигаватты, сотни мегаватт)
- Региональные сети (мегаватты)
- Районные и распределительные сети (мегаватты, сотни киловатт)
- Внутренние сети и электропроводка (мегаватты, сотни киловатт)
| Для улучшения этой статьи желательно ? :
Wikimedia Foundation . 2010 . ПолезноеСмотреть что такое «Класс напряжения» в других словарях:класс напряжения — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN voltage class … Справочник технического переводчика класс напряжения — įtampos klasė statusas T sritis automatika atitikmenys: angl. voltage class vok. Reihenspannung, f; Spannungsklasse, f rus. класс напряжения, m pranc. classe de tension, f … Automatikos terminų žodynas класс напряжения электрооборудования — Номинальное междуфазное напряжение электрической сети, для работы в которой предназначено электрооборудование. Примечания: 1. Класс напряжения обмотки трансформатора (реактора) по ГОСТ 16110. 2. Класс напряжения трансформатора по ГОСТ 16110. 3.… … Справочник технического переводчика Класс напряжения электрооборудования — номинальное междуфазное напряжение электрической сети, для работы в которой предназначено электрооборудование. Источник: ГОСТ 1516.3 96. Электрооборудование переменного тока на напряжения от 1 до 750 кВ. Требования к электрической прочности… … Официальная терминология класс напряжения разрядника — Номинальное напряжение сети, в которой устанавливается разрядник (этот параметр является дополняющим, однозначно связанным с номинальным напряжением разрядника, указанным в табл. 2—4) [ГОСТ 16357 83] Тематики высоковольтный аппарат,… … Справочник технического переводчика Класс напряжения электрооборудования — 3.1 Класс напряжения электрооборудования по ГОСТ 1516.1. Источник … Словарь-справочник терминов нормативно-технической документации Класс напряжения электрооборудования — – номинальное напряжение электрической системы, для работы в которой предназначено данное электрооборудование. ПУЭ, п. 1.8.12 … Коммерческая электроэнергетика. Словарь-справочник класс — 3.7 класс : Совокупность подобных предметов, построенная в соответствии с определенными правилами. Источник: ГОСТ Р 51079 2006: Технические средства реабилитации людей с ограничениями жизнедеятельности. Классификация … Словарь-справочник терминов нормативно-технической документации класс точности — класс точности: совокупность значений технологических допусков. Каждый класс точности содержит ряд допусков, соответствующих одинаковой степени точности для всех номинальных значений данного геометрического параметра; Источник … Словарь-справочник терминов нормативно-технической документации Класс точности — основная метрологическая характеристика прибора, определяющая допустимые значения основных и дополнительных погрешностей, влияющих на точность измерения. Погрешность может нормироваться, в частности, по отношению к: результату измерения (по… … Википедия Источник Класс напряженияКласс напряжения — это типовое значение линейного (междуфазного) напряжения в электрических сетях, которое является номинальным для различных групп оборудования: трансформаторов, линий, генераторов, реакторов и прочих. Класс напряжения определяет требуемый уровень электрической изоляции электрооборудования. Порядок класса напряжения определяет то, для каких целей и задач применяется это оборудование. В частности, низкие напряжения используются для распределения мощности между мелкими потребителями на малые расстояния, средние классы — для распределения мощности между средними потребителями и группами потребителей на умеренной дистанции, высокие и сверхвысокие классы — для распределения мощности между крупными потребителями и для передачи мощности на большие расстояния. Иными словами низкие и средние классы напряжения характерны для распределительных сетей, в то время как высокие и сверхвысокие классы — для системообразующих сетей, связывающих отдельные энергосистемы. СодержаниеНеобходимость применения различных классов напряженияНа заре электроэнергетики, когда идея объединенных энергосистем ещё не возникла, электрические сети использовались изолированно на отдельных предприятиях, аналогично тому, как до этого применялись механические передаточные системы. Каждое из предприятий стремилось построить свою собственную станцию и управлять её самостоятельно. Идею электростанции, как независимого объекта, имеющего своей целью исключительно выработку и продажу электроэнергии как товара, одним из первых предложил Сэмюэль Инсулл [1] . И если прежде низких классов напряжения, которые могли быть различны, было достаточно для нужд промышленности, поскольку задачи совместной работы предприятий не стояло, то теперь в новых реалиях возникло два ключевых вопроса: как передать мощность от электростанций сразу нескольким потребителям — проблема удаленности источников электроэнергии от районов потребления, и как обеспечить совместимость по напряжению всех используемых установок? Если второй вопрос разрешился с точки зрения электроэнергетики сравнительно просто: был введен стандарт на классы напряжения, что обеспечило их совместимость, то первый из них оказывается напротив крайне сложным, поскольку передача на большое расстояние создает сразу несколько инженерных проблем. Ниже приводятся основные их них: Чем выше напряжение, тем меньше потери мощности. Данную закономерность хорошо описывает формула потерь в элементе сети по параметрам конца передачи: где [math]\Delta\dot Чем выше напряжение, тем выше предел передаваемой мощности. Для любой передачи существует предел передаваемой активной мощности, определяемые статической устойчивостью, который в простейшем случае на основании уравнения угловой хараткеристки передачи определяется следующим выражением: [math]\displaystyle P_ где [math]U_1, U_2[/math] — напряжения по концам передачи, кВ; [math]X[/math] — реактивное сопротивление передачи, Ом; [math]P_ Наиболее рациональный класс напряжения с точки зрения минимума потерь и капиталловложений определяется на этапе долгосрочного планирования режимов работы электрической сети. Классификация классов напряженияПо уровню напряжения все классы напряжения условно разделяют на следующие группы:
Максимально допустимые рабочие напряжения превышают номинальные значения на 15 % [math](U_<\text<ном>>\le 220\text< кВ>)[/math] , на 10 % [math](220 \lt U_<\text<ном>> \lt 500\text< кВ>)[/math] и на 5 % [math](500 \le U_<\text<ном>>\text< кВ>)[/math] . Шкалы номинальных напряжений генераторов и вторичных обмоток трансформаторов выбраны выше на 5—10 % номинальных напряжений потребителей, линий электропередачи, первичных обмоток трансформаторов с целью облегчения поддержания номинального напряжения у потребителей.
Комментарии к вопросу о классах напряженияУчёт режима работы нейтралиПри расчетах коротких замыканий следует обращать особое внимание на класс напряжения, поскольку в зависимости от класса может быть различным режим работы нейтрали в сети. В частности, на низших и средних классах напряжения нейтраль в подавляющем большинстве случаев оказывается изолированной — это позволяет при адекватных затратах на повышенный уровень изоляции облегчить режим работы сети, а именно фактически исключить фактор однофазных замыканий, которые, являясь наиболее вероятными среди оных в сетях всех уровней, при изолированной нейтрали не представляют существенной угрозы и, что особенно важно, не приводят к нарушению электроснабжения потребителей [2] . Таким образом, для расчётчика класс напряжения должен в данной ситуации, как минимум, указать на необходимость уточнения состояния нейтрали и учет этого фактора в дальнейших расчётах. Повышенное напряжение базисного узлаВо многих практических расчётах можно столкнуться с тем, что напряжение базисного узла задается повышенным и редко совпадает с номинальной величиной. В частности, для сетей 110 кВ величина составляет 115 (121) кВ, для сетей 220 кВ — 230 (242) кВ. Объяснений данному факту может быть несколько. В первую очередь это может быть обусловлено тем, что в соответствии с указаниями по расчёту коротких замыканий при учете тока подпитки от внешней системы необходимо задавать напряжение этой системы выше номинала на 5 %. Эта мера направлена на намеренное завышение расчётного тока короткого замыкания, чтобы исключить неопределенность, связанную с составом оборудования и режимом внешней сети. Второе объяснение менее убедительно по сравнению с первым, но имеет под собой вполне логичное основание. Как правило, базисный узел задается на шинах мощной электростанции района, либо на шинах подстанции высокого или сверхвысокого напряжения, связывающей район с внешней системой. Опыт расчётов подсказывает, что в большинстве случаев мощность именно вытекает из базисного узла, а не наоборот. В начале передачи, опять же как правило, напряжение выше, чем на приемном конце, а на электростанции напряжения в нормальном режиме выше, чем у потребителей. Таким образом, умышленное завышение напряжения базисного узла имеет своей целью отразить указанную физическую закономерность. Цветовое обозначение классов напряженияВ отечественной практике расчётов и управления энергосистемами при графическом отображении электрических схем сетей и систем принято использовать унифицированное цветовое обозначение классов напряжений. При этом есть несколько стандартов и несколько вариантов цветовых схем классов напряжения, в частности внимания заслуживают прежде всего Стандарт СО ЕЭС и Стандарт ФСК ЕЭС. Таблицах ниже указаны общепринятые цветовые обозначения раздичных классов напряжения по этим стандартам [3] [4] .
Разница палитр, как не трудно заметить, не драматична и не препятствует использованию ни одной из них, но предагаемый стандартом ФСК вариант, подразумевает работу в программном комплексе с черным фоном, из-за чего обесточенные участки предлагается показывать белым цветом. Таким образом, ориентация на цветовую схему стандарта СО ЕЭС является более удобной для рядовых расчётов. Категорически соблюдать требования к классам напряжения необходимо только при сотрудничестве непосредственно с соответствующими организациями. Источник |