Характеристики насосов — подача, напор и рабочая точка
Определение понятия напора
Повышение давления насосом называется напором. Под напором насоса (H) понимается удельная механическая работа, передаваемая насосом перекачиваемой жидкости.
H = E/G [m]
E = механическая энергия [Н•м]
G = вес перекачиваемой жидкости [Н]
При этом напор, создаваемый насосом, и расход перекачиваемой жидкости (подача) зависят друг от друга. Эта зависимость отображается графически в виде характеристики насоса. Вертикальная ось (ось ординат) отражает напор насоса (H), выраженный в метрах [м]. Возможны также другие масштабы шкалы напора. При этом действительны следующие соотношения:
10 м в.ст. = 1 бар = 100 000 Па = 100 кПа
На горизонтальной оси (ось абсцисс) нанесена шкала подачи насоса (Q), выраженной в кубометрах в час [м3/ч]. Возможны также другие масштабы шкалы подачи, например [л/с]. Форма характеристики показывает следующие виды зависимости: энергия электропривода (с учетом общего КПД) преобразуется в насосе в такие формы гидравлической энергии, как давление и скорость. Если насос работает при закрытом клапане, он создает максимальное давление. В этом случае говорят о напоре насоса H0 при нулевой подаче.
Когда клапан начинает медленно открываться, перекачиваемая среда приходит в движение. За счет этого часть энергии привода преобразуется в кинетическую энергию жидкости. Поддержание первоначального давления становится невозможным. Характеристика насоса приобретает форму падающей кривой. Теоретически характеристика насоса пересекается с осью подачи. Тогда вода обладает только кинетической энергией, то есть давление уже не создается. Однако, так как в системе трубопроводов всегда имеет место внутреннее сопротивление, в реальности характеристики насосов обрываются до того, как будет достигнута ось подачи.
— Характеристики насосов
— Различная крутизна при идентичном корпусе и рабочем колесе насосов (например, в зависимости от частоты вращения мотора)
Форма характеристик насоса
На рисунке показана различная крутизна характеристик насоса, которая может зависеть, в частности, от частоты вращения мотора.
Различное изменение подачи и давления
При этом крутизна характеристики и смещение рабочей точки влияет также на изменение подачи и напора:
• пологая кривая
– большее изменение подачи
при незначительном изменении напора
• крутая кривая
– большое изменение подачи
при значительном изменении напора
Характеристика насосной системы
Трение, имеющее место в трубопроводной сети, ведет к потере давления перекачиваемой жидкости по всей длине. Кроме этого, потеря давления зависит от температуры и вязкости перекачиваемой жидкости, скорости потока, свойств арматуры и агрегатов, а также сопротивления, обусловленного диаметром, длиной и шероховатостью стенок труб.
Потеря давления отображается на графике в виде характеристики системы. Для этого используется тот же график, что и для характеристики насоса.
Форма характеристики показывает следующие зависимости:
Причиной гидравлического сопротивления, имеющего место в трубопроводной сети, является трение воды о стенки труб, трение частиц воды друг о друга, а также изменение направления потока в фасонных деталях арматуры.
При изменении подачи, например, при открывании и закрывании термостатических вентилей, изменяется также скорость потока и, тем самым, сопротивление.
Так как сечение труб можно рассматривать как площадь живого сечения потока, сопротивление изменяется квадратично. Поэтому график будет иметь форму параболы. Эту связь можно представить в виде следующего уравнения:
H1/H2 = (Q1/Q2) 2
Выводы
Если подача в трубопроводной сети уменьшается в два раза, то напор падает на три четверти. Если, напротив, подача увеличивается в два раза, то напор повышается в четыре раза. В качестве примера можно взять истечение воды из отдельного водопроводного крана.
При начальном давлении 2 бара, что соответствует напору насоса прим. 20 м, вода вытекает из крана DN 1/2 с расходом 2 м3/ч.
Чтобы увеличить подачу в два раза, необходимо повысить начальное давление на входе с 2 до 8 бар.
Изменяющаяся рабочая точка
Рабочая точка
Точка, в которой пересекаются характеристики насоса и системы, является рабочей точкой системы и насоса. Это означает, что в этой точке имеет место равновесие между полезной мощностью насоса и мощностью, потребляемой трубопроводной сетью. Напор насоса всегда равен сопротивлению системы. От этого зависит также подача, которая может быть обеспечена насосом.
При этом следует иметь в виду, что подача не должна быть ниже определенного минимального значения. В противном случае это может вызвать слишком сильное повышение температуры в насосной камере и, как следствие, повреждение насоса. Во избежание этого следует неукоснительно соблюдать инструкции производителя.
Рабочая точка за пределами характеристики насоса может вызвать повреждение мотора. По мере изменения подачи в процессе работы насоса также постоянно смещается рабочая точка. Найти оптимальную расчетную рабочую точку в соответствии с максимальными эксплуатационными требованиями входит в задачи проектировщика.
Такими требованиями являются:
для циркуляционных насосов систем отопления — потребление тепла зданием,
для установок повышения напора — пиковый расход для всех мест водоразбора.
Все остальные рабочие точки находятся слева от данной расчетной рабочей точки.
На двух рисунках показано влияние изменения гидродинамического сопротивления на смещение рабочей точки. Смещение рабочей точки по направлению влево от расчетного положения неизбежно вызывает увеличение напора насоса. В результате этого возникает шум в клапанах. Регулирование напора и подачи в соответствии с потребностью может производиться применением насосов с частотным преобразователем. При этом существенно сокращаются эксплуатационные расходы.
Источник
Подача и Напор Насоса
Подача — Q [м³/ч] — объём воды, подаваемый насосом в единицу времени. Подача насоса определяется рабочей точкой на его характеристике и кроме конструктивных особенностей зависит от частоты вращения рабочего колеса и гидравлической характеристики сети.
Оптимальная подача насоса достигается при максимальном значении коэффициента полезного действия. Фактическую подачу насоса можно определить по напорно-расходной характеристике зная создаваемый напор.
Напор — H [м.вод.ст] — разница давлений между входным и выходным патрубком насоса. Напор насоса слагается из высот, которые необходимо преодолеть жидкости.
H = Hz + (Pв — Pн)/(ρg) + dh + (С²в — С²н)/(2g)
- Hz — геометрическая высота подъёма, м равная разнице уровней поверхности жидкости в приёмном (верхнем) и подающем (нижнем) резервуарах.
- (Pв — Pн)/(ρg) — высота, м, соответствующая разности давлений, Па в верхнем и нижнем резервуарах;
- dh – сумма гидравлических потерь (на трение и в местных сопротивлениях) во всасывающем и напорном трубопроводах, м;
- (С²в — С²н)/(2g) — высота, м, соответствующая разности кинетической энергии жидкости при скорости движения Св м/с на выходе из напорного трубопровода в верхний резервуар и при скорости Сн, м/c, на входе во всасывающий трубопровод из нижнего резервуара;
- ρ — плотность жидкости
- g — ускорение свободного падения, равное 9,8 м/с²
Если давление приложенное к поверхности жидкости в обоих резервуарах будет одинаковым, например, при открытых резервуарах, и жидкость в обоих резервуарах находится в состоянии покоя, тогда выражение определяющее напор насоса можно упростить:
Из выше приведенных выражений видно, что напор насоса поднимающего воду определяется, высотой подъёма и потерями напора в трубопроводах. В замкнутом циркуляционном кольце, (например системы отопления), напор насоса определяется суммой потерь напора на всех элементах кольца и не зависит от высоты системы и места установки насоса в ней.
Напорно-расходная характеристика — графическое отображение зависимости напора насоса от его подачи в координатах Q [м³/ч] / H [м.вод.ст]. Напорно-расходная характеристика, является основной характеристикой используемой для выбора насосов и приводится в каталогах производителей в виде графиков.
Рабочая точка насоса — точка на пересечении напорно-расходной характеристики с горизонтальной линией, проведённой с точки на оси ординат, которая соответствует развиваемому напору. Чтобы определить фактическую подачу насоса из рабочей точки опускают перпендикуляр на ось подачи (абсцисс).
Таким образом, подачу насоса определяет развиваемый им напор, который в повысительных насосах определяется высотой подъёма и потерями в трубопроводах, а в циркуляционных насосах — гидравлической характеристикой циркуляционного кольца. Так как, в циркуляционном кольце изменение потерь напора пропорционально квадрату изменения расхода проходящего через него, гидравлическая характеристика сети в координатах Q [м³/ч] / H [м.вод.ст], имеет вид параболы.
Высота всасывания — Нвс [м] — при условии забора воды из нижнего резервуара, в котором на зеркало воды действует атмосферное давление, высота всасывания насоса соответствует разнице уровней в метрах, между осью рабочего колеса и уровнем жидкости в нижнем резервуаре, за вычетом потерь напора в трубопроводе, который соединяет нижний резервуар и насос.
Подъём воды с нижнего резервуара происходит за счёт разницы давлений, при этом в рабочем колесе насоса создаётся разрежение, а на воду действует атмосферное давление. Так как атмосферному давлению соответствует столб воды высотою в 10,3 метра, а насос не может создать в рабочем колесе абсолютный вакуум — высота всасывания насоса не может превышать 8 метров.
Кавитационный запас — NPSH [м.вод.ст] — минимальное давление во всасывающем патрубке насоса обеспечивающее безкавитационную работу. Значение кавитационного запаса определяется опытным путём производителями насосов и приводится в виде графика в зависимости от подачи насоса.
Полезная мощность насоса — Nu [Вт] — соответствует энергии передаваемой жидкости в единицу времени.
Мощность на валу насоса — Nw [Вт] — механическая мощность, которая передаётся на вал насоса. Механическая мощность больше полезной, на величину гидравлических потерь и потерь на трение в рабочем колесе.
КПД насоса — η [%] — коэффициент полезного действия характеризующий степень совершенства центробежного насоса и определяется как отношение полезной мощности к мощности на валу.
Номинальный диаметр — DN — численное обозначение внутреннего диаметра присоединительных патрубков насоса общее для всех трубопроводных элементов. Номинальный диаметр насоса не имеет размерности, но его значение приблизительно равно внутреннему диаметру присоединяемого трубопровода.
Ряд условных проходов DN (Ду) трубопроводных элементов регламентирован ГОСТ 28338-89 «Проходы условные (размеры номинальные)». Альтернативным обозначением номинального диаметра DN, распространённым в странах постсоветского пространства, был условный диаметр.
Номинальное давление — PN [бар] — наибольшее избыточное давление воды с температурой в 20°C, при котором допускается длительная работа насоса.
Альтернативным обозначением номинального давления, распространённым в странах постсоветского пространства, было условное давление. Ряд номинальных давлений PN (Ру) трубопроводных элементов регламентирован ГОСТ 26349-84 «Давления номинальные (условные)».
Источник
Подача насоса
Одним из основных параметров является подача насоса ввиду того, что насос – это машина, в которой происходит преобразование механической энергии привода в гидравлическую энергию перекачиваемой жидкости, благодаря чему осуществляется её движение (поток).
Основная характеристика насоса — это зависимость подачи от расхода (производительности) насосного агрегата.
Содержание статьи
Подача и высота подачи насоса
Подача насоса представляет собой количество жидкости, подаваемой в единицу времени. В зависимости от характера установки количество подаваемой жидкости измеряется объёмом или весом.
Высота подачи насоса — это высота, на которую насос способен поднять воду по трубопроводу.
Объёмная подача = единица объёма / единица времени.
Размерности объёмной подачи: м3/ч, м3/сек, л/мин и т.п.
Весовая подача = единица веса / единица времени.
Размерности весовой подачи: т/ч, кГ/сек.
Весовая подача G связана с объемной подачей Q соотношением
G = уQ, где у – удельный вес жидкости.
Номинальная подача насоса – это объем жидкости, подаваемый в определенный период времени. Обычно выражается в литрах в минуту или кубических метрах в час.
Подача поршневых насосов.
Все типы насосов, несмотря на их огромное разнообразие, делятся на 2 группы: насосы вытеснения и лопастные насосы.
Самым простым насосом вытеснения является поршневой насос, который представляет собой цилиндр с перемещающимся в нем поршнем. При перемещении поршня из правого крайнего положения в левое жидкость занимавшая внутренне пространство цилиндра, вытесняется в сторону нагнетания.
При обратном движении поршня это пространство вновь заполняется заполняется жидкостью, поступающей со стороны всасывания.
Подача поршневого насоса выражается произведением вытесненного за один ход объема V на число рабочих ходов в единицу времени.
Объем V=f*S, где f – площадь поршня, а S – его ход
Высота подачи насоса — подача насоса
Q = f Si /60, где i – число ходов поршня
Подача центробежных насосов
Подачу группы лопастных насосов можно посмотреть на примере центробежного насоса.
В отличие от насосов поршневого типа, центробежные насосы развивают и поддерживают постоянную подачу, что видно по расположенному рядом графику. Регулирование подачи и напора, развиваемых насосом осуществляется за счет установки запорной арматуры — кранов и вентилей.
Зависимость подачи Q от напора H называется напорно расходной характеристикой насоса. Если Вы обратите внимание на характеристику, то заметите, что она имеет изогнутый вид.
Работа центробежного насоса основана на совершении силового взаимодействия лопасти колеса с обтекающим её потоком. При вращении колеса в потоке жидкости возникает разность давлений по обе стороны каждой лопасти. Силы давления лопастей на поток создают вынужденное вращательное и поступательное движение жидкости, увеличивая её давление и скорость, т.е. механическую энергию. При постоянном числе оборотов каждому значению подачи лопастного насоса соответствует определенный напор.
Путем многочисленных опытов и испытаний насосов центробежного типа удалось придти к наиболее энергоэффективной рабочей точке насоса, расположенной на вершине характеристики. В рабочей точке насос имеет самый высокий КПД.
КПД насосов разных типов и размеров могут отличаться в очень широком диапазоне. Для насосов с мокрым ротором КПД равен от 5% до 54 % (высокоэффективные насосы); для насосов с сухим ротором КПД равен от 30 % до 80%. Если насос работает при закрытом клапане, создается высокое давление, но вода не перемещается, поэтому КПД насоса в этот момент равняется нулю. То же самое справедливо при открытой трубе. Несмотря на большое количество перекачиваемой воды, давление не создается, а значит КПД равняется нулю.
Области применения насосов по подаче.
В насосах вытеснения величина напора принципиально не ограничена. Повышение же подачи может быть достигнуто лишь увеличением конструктивных размеров и числа рабочих ходов (числа оборотов).
В таких насосах вытеснения, как поршневые, вследствие цикличности движения тела вытеснения поток жидкости неустановившийся, и повышение скорости потока, а следовательно, и высота подачи насоса ограниченна инерционными явлениями за счет увеличения числа оборотов. Отсюда вытекает область применения поршневых и плунжерных насосов – это высокие давления при относительно малых подачах.
Соединение поршневых и плунжерных насосов с наиболее распространенными типами двигателей – электродвигателями, требует применения кривошипного механизма. В роторных насосах вытеснения – шестеренчатых и винтовых насосах – этот недостаток устранен, и они могут соединятся с современными типами двигателей. Шестеренчатые насосы, как и поршневые применяются при относительно малых подачах и сравнительно больших напорах.
Лопастные насосы хороши в области невысоких напоров, поскольку вследствие вращения лопастного колеса с постоянным числом оборотов подача насоса будет значительно больше, чем в поршневом насосе.
Центробежные насосы при тех же значениях подачи получаются значительнее компактней, легче и дешевле. КПД лопастного насоса при умеренных напорах не уступает КПД насоса поршневого типа. Поэтому для средних и низких напоров и большой подачи(расхода) применяют исключительно лопастные насосы.
Видео по теме
Управление величиной подачи насоса осуществляется несколькими способами. Самый популярный — с помощью регулирующей арматуры. Открывая вентиль вы увеличиваете подачу, а закрывая его – уменьшаете.
Второй способ уменьшения/увеличения подачи – изменения частоты вращения насоса. Многие современные насосы способны работать в нескольких режимах – переключение между которыми осуществляется прямо на корпусе. Переключаясь между режимами и изменяя частоту вращения Вы изменяете и подачу.
Источник