- Неорганическая химия
- Содержание
- История определения
- Классификация химических элементов
- Простые вещества
- Металлы
- Неметаллы
- Сложные вещества
- Оксиды
- Основания
- Кислоты
- Карбиды
- Нитриды
- Гидриды
- Интерметаллиды
- Неорганическая химия — это что такое? Неорганическая химия в школьной программе
- Что это такое
- Наука в историческом аспекте
- Классы неорганических веществ
- Простые вещества в неорганике
- Металлы
- Неметаллы
- Сложные вещества в неорганике
- Двухэлементные вещества
- Трехэлементные ассоциаты
- Классы неорганической химии
- Оксиды
- Кислоты в неорганике
- Основная неорганическая химия
- Итоги
Неорганическая химия
Неоргани́ческая хи́мия — раздел химии, связанный с изучением строения, реакционной способности и свойств всех химических элементов и их неорганических соединений. Это область охватывает все химические соединения, за исключением органических веществ (класса соединений, в которые входит углерод, за исключением нескольких простейших соединений, обычно относящихся к неорганическим [1] ). Различие между органическими и неорганическими соединениями, содержащими углерод, являются по некоторым представлениям произвольными. [2] Неорганическая химия изучает химические элементы и образуемые ими простые и сложные вещества (кроме органических соединений). Обеспечивает создание материалов новейшей техники. Число неорганических веществ приближается к 400 тысячам.
Теоретическим фундаментом неорганической химии является периодический закон и основанная на нём периодическая система Д. И. Менделеева. Важнейшая задача неорганической химии состоит в разработке и научном обосновании способов создания новых материалов с нужными для современной техники свойствами.
В России исследованиями в области неорганической химии занимаются Институт неорганической химии им. А. В. Николаева СО РАН (ИНХ СО РАН, Новосибирск), Институт общей и неорганической химии им. Н. С. Курнакова (ИОНХ РАН, Москва), Институт физико-химических проблем керамических материалов (ИФХПКМ, Москва), Научно-технический центр «Сверхтвердые материалы» (НТЦ СМ, Троицк) и ряд других учреждений. Результаты исследований публикуются в журналах («Журнал неорганической химии» и др.).
Содержание
История определения
Исторически название неорганическая химия происходит от представления о части химии, которая занимается исследованием элементов, соединений, а также реакций веществ, которые не образованы живыми существами. Однако со времен синтеза мочевины из неорганического соединения цианата аммония (NH4OCN), который совершил в 1828 году выдающийся немецкий химик Фридрих Вёлер, стираются границы между веществами неживой и живой природы. Так, живые существа производят много неорганических веществ. С другой стороны, почти все органические соединения можно синтезировать в лаборатории. Однако деление на различные области химии является актуальным и необходимым, как и раньше, поскольку механизмы реакций, структура веществ в неорганической и органической химии различаются. Это позволяет проще систематизировать методы и способы исследования в каждой из отраслей.
Классификация химических элементов
Периоди́ческая систе́ма хими́ческих элеме́нтов (табли́ца Менделе́ева) — классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона, установленного русским химиком Д. И. Менделеевым в 1869 году. Её первоначальный вариант был разработан Д. И. Менделеевым в 1869—1871 годах и устанавливал зависимость свойств элементов от их атомного веса (по-современному, от атомной массы). Всего предложено несколько сотен [3] вариантов изображения периодической системы (аналитических кривых, таблиц, геометрических фигур и так далее). В современном варианте системы предполагается сведение элементов в двумерную таблицу, в которой каждый столбец (группа) определяет основные физико-химические свойства, а строки представляют собой периоды, в определённой мере подобные друг другу.
Простые вещества
Состоят из атомов одного химического элемента (являются формой его существования в свободном состоянии). Все простые вещества в неорганической химии делятся на две большие группы: Металлы — Неметаллы.
Металлы
Мета́ллы (от лат. metallum — шахта, рудник) — группа элементов, обладающая характерными металлическими свойствами, такими как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность и металлический блеск. Из 118 [4] химических элементов, открытых на данный момент (из них не все официально признаны), к металлам относят:
- 6 элементов в группе щелочных металлов,
- 6 в группе щёлочноземельных металлов,
- 38 в группе переходных металлов,
- 11 в группе лёгких металлов,
- 7 в группе полуметаллов,
- 14 в группе лантаноиды + лантан,
- 14 в группе актиноиды (физические свойства изучены не у всех элементов) + актиний,
- вне определённых групп бериллий и магний.
Таким образом, к металлам относится 96 элементов из всех открытых.
Неметаллы
Немета́ллы — химические элементы с типично неметаллическими свойствами, которые занимают правый верхний угол Периодической системы. В молекулярной форме в виде простых веществ в природе встречаются азот, кислород и сера. Чаще неметаллы находятся в химически связанном виде: это вода, минералы, горные породы, различные силикаты, фосфаты, бораты. По распространённости в земной коре неметаллы существенно различаются. Наиболее распространёнными являются кислород, кремний, водород; наиболее редкими — мышьяк, селен, иод. Характерной особенностью неметаллов является большее (по сравнению с металлами) число электронов на внешнем энергетическом уровне их атомов. Это определяет их бо́льшую способность к присоединению дополнительных электронов и проявлению более высокой окислительной активности, чем у металлов. К неметаллам также относят водород и гелий.
Сложные вещества
Большую часть сложных неорганических веществ (то есть состоящих из двух и более химических элементов) можно разделить на следующие группы:
Оксиды
Окси́д (о́кисел, о́кись) — бинарное соединение химического элемента с кислородом в степени окисления −2, в котором сам кислород связан только с менее электроотрицательным элементом. Химический элемент кислород по электроотрицательности второй после фтора, поэтому к оксидам относятся почти все соединения химических элементов с кислородом. К исключениям относятся, например, дифторид кислорода OF2. Оксиды — весьма распространённый тип соединений, содержащихся в земной коре и во Вселенной вообще. Примерами таких соединений являются ржавчина, вода, песок, углекислый газ, ряд красителей. Оксидами называется класс минералов, представляющих собой соединения металла с кислородом.
Со́ли — класс химических соединений, к которому относятся вещества, состоящие из катионов металла (или катионов аммония ; известны соли фосфония
или гидроксония
) и анионов кислотного остатка. Типы солей:
- Средние (нормальные) соли — все атомы водорода в молекулах кислоты замещены на атомы металла. Пример:
,
.
- Кислые соли — атомы водорода в кислоте замещены атомами металла частично. Они получаются при нейтрализации основания избытком кислоты. Пример:
,
.
- Осно́вные соли — гидроксогруппы основания (OH − ) частично замещены кислотными остатками. Пример:
.
- Двойные соли — в их составе присутствует два различных катиона, получаются кристаллизацией из смешанного раствора солей с разными катионами, но одинаковыми анионами. Пример:
.
- Смешанные соли — в их составе присутствует два различных аниона. Пример:
.
- Гидратные соли (кристаллогидраты) — в их состав входят молекулы кристаллизационной воды. Пример:
.
- Комплексные соли — в их состав входит комплексный катион или комплексный анион. Пример:
,
.
Особую группу составляют соли органических кислот, свойства которых значительно отличаются от свойств минеральных солей. Некоторые из них можно отнести к особенному классу органических солей, так называемых ионных жидкостей или по-другому «жидких солей», органических солей с температурой плавления ниже 100 °C.
Основания
Основа́ния — класс химических соединений:
- Основания (осно́вные гидрокси́ды) — сложные вещества, которые состоят из атомов металла или иона аммония и гидроксогруппы (-OH). В водном растворе диссоциируют с образованием катионов и анионов ОН − . Название основания обычно состоит из двух слов: «гидроксид металла/аммония». Хорошо растворимые в воде основания называются щелочами.
- Согласно другому определению, основания — один из основных классов химических соединений, вещества, молекулы которых являются акцепторамипротонов.
Кислоты
Кисло́ты — сложные вещества, в состав которых обычно входят атомы водорода, способные замещаться на атомы металлов, и кислотный остаток. Водные растворы кислот имеют кислый вкус, обладают раздражающим действием, способны менять окраску индикаторов, отличаются рядом общих химических свойств.
Также можно выделить следующие группы неорганических веществ: карбиды, нитриды, гидриды, интерметаллиды и другие, которые не укладываются в приведённую выше классификацию (более подробно см. Неорганическое вещество).
Карбиды
Карби́ды — соединения металлов и неметаллов с углеродом. Традиционно к карбидам относят соединения, в которых углерод имеет большую электроотрицательность, чем второй элемент (таким образом из карбидов исключаются такие соединения углерода, как оксиды, галогениды и тому подобные). Карбиды — тугоплавкие твёрдые вещества: карбиды бора и кремния (В4С и SiC), титана, вольфрама, циркония (TiC, WC и ZrC соответственно) обладают высокой твёрдостью, жаростойкостью, химической инертностью.
Нитриды
Нитри́ды — соединения азота с менее электроотрицательными элементами, например, с металлами (AlN;TiNx;Na3N;Ca3N2;Zn3N2; и т. д.) и с рядом неметаллов (NH3, BN, Si3N4). Соединения азота с металлами чаще всего являются тугоплавкими и устойчивыми при высоких температурах веществами, например, эльбор. Нитридные покрытия придают изделиям твёрдость, коррозионную стойкость; находят применение в энергетике, космической технике.
Гидриды
Гидри́ды — соединения водорода с металлами и с имеющими меньшую электроотрицательность, чем водород, неметаллами. Иногда к гидридам причисляют соединения всех элементов с водородом [5] [6] .
Интерметаллиды
Интерметалли́д (интерметаллическое соединение) — химическое соединение из двух или более металлов. Интерметаллиды, как и другие химические соединения, имеют фиксированное соотношение между компонентами. Интерметаллиды обладают, как правило, высокой твёрдостью и высокой химической стойкостью. Очень часто интерметаллиды имеют более высокую температуру плавления, чем исходные металлы. Почти все интерметаллиды хрупки, так как связь между атомами в решётке становится ковалентной или ионной (например, в ауриде цезия CsAu), а не металлической. Некоторые из них имеют полупроводниковые свойства, причём, чем ближе к стехиометрии соотношение элементов, тем выше электрическое сопротивление. Никелид титана, известный под маркой «нитинол», обладает памятью формы — после закалки изделие может быть деформировано механически, но примет исходную форму при небольшом нагреве.
Источник
Неорганическая химия — это что такое? Неорганическая химия в школьной программе
Курс химии в школах начинается в 8-м классе с изучения общих основ науки: описываются возможные виды связи между атомами, типы кристаллических решеток и наиболее распространенные механизмы реакций. Это становится фундаментом для изучения важного, но более специфического раздела — неорганики.
Что это такое
Неорганическая химия — это наука, которая рассматривает принципы строения, основные свойства и реакционную способность всех элементов таблицы Менделеева. Важную роль в неорганике играет Периодический закон, который упорядочивает систематическую классификацию веществ по изменению их массы, номера и типа.
Курс охватывает и соединения, образуемые при взаимодействии элементов таблицы (исключение составляет только область углеводородов, рассматриваемая в главах органики). Задачи по неорганической химии позволяют отработать полученные теоретические знания на практике.
Наука в историческом аспекте
Название «неорганика» появилось в соответствии с представлением, что она охватывает часть химического знания, которая не связана с деятельностью биологических организмов.
Со временем было доказано, что большая часть органического мира может производить и «неживые» соединения, а углеводороды любого типа синтезируются в условиях лаборатории. Так, из аммония цианата, являющегося солью в химии элементов, немецкий ученый Велер смог синтезировать мочевину.
Во избежание путаницы с номенклатурой и классификацией типов исследований обеих наук программа школьного и университетского курсов следом за общей химией предполагает изучение неорганики в качестве фундаментальной дисциплины. В научном мире сохраняется аналогичная последовательность.
Классы неорганических веществ
Химия предусматривает такую подачу материала, при которой вводные главы неорганики рассматривают Периодический закон элементов. Это классификация особого типа, которая основана на предположении, что атомные заряды ядер оказывают влияние на свойства веществ, причем данные параметры изменяются циклически. Изначально таблица строилась как отражение увеличения атомных масс элементов, но вскоре данная последовательность была отвергнута ввиду ее несостоятельности в том аспекте, в котором требуют рассмотрения данного вопроса неорганические вещества.
Химия, помимо таблицы Менделеева, предполагает наличие около сотни фигур, кластеров и диаграмм, отражающих периодичность свойств.
В настоящее время популярен сводный вариант рассмотрения такого понятия, как классы неорганической химии. В столбцах таблицы указываются элементы в зависимости от физико-химических свойств, в строках – аналогичные друг другу периоды.
Простые вещества в неорганике
Знак в таблице Менделеева и простое вещество в свободном состоянии – чаще всего разные вещи. В первом случае отражается только конкретный вид атомов, во втором – тип соединения частиц и их взаимовлияние в стабильных формах.
Химическая связь в простых веществах обуславливает их деление на семейства. Так, можно выделить две обширные разновидности групп атомов – металлы и неметаллы. Первое семейство насчитывает 96 элементов из 118 изученных.
Металлы
Металлический тип предполагает наличие одноименной связи между частицами. Взаимодействие основано на обобществлении электронов решетки, которая характеризуется ненаправленностью и ненасыщаемостью. Именно поэтому металлы хорошо проводят тепло, заряды, обладают металлическим блеском, ковкостью и пластичностью.
Условно металлы находятся слева в таблице Менделеева при проведении прямой линии от бора к астату. Элементы, близкие по расположению к этой черте, чаще всего носят пограничный характер и проявляют двойственность свойств (например, германий).
Металлы в большинстве образуют основные соединения. Степени окисления таких веществ обычно не превышают двух. В группе металличность повышается, а в периоде уменьшается. Например, радиоактивный франций проявляет более основные свойства, чем натрий, а в семействе галогенов у йода даже появляется металлический блеск.
Иначе дело обстоит в периоде – завершают подуровни инертные газы, перед которыми находятся вещества с противоположными свойствами. В горизонтальном пространстве таблицы Менделеева проявляемая реакционная способность элементов меняется от основной через амфотерную к кислотной. Металлы – хорошие восстановители (принимают электроны при образовании связей).
Неметаллы
Данный вид атомов включают в основные классы неорганической химии. Неметаллы занимают правую часть таблицы Менделеева, проявляя типично кислотные свойства. Наиболее часто данные элементы встречаются в виде соединений друг с другом (например, бораты, сульфаты, вода). В свободном молекулярном состоянии известно существование серы, кислорода и азота. Существует также несколько двухатомных газов-неметаллов – помимо двух вышеупомянутых, к ним можно отнести водород, фтор, бром, хлор и йод.
Являются наиболее распространенными веществами на земле – особенно часто встречаются кремний, водород кислород и углерод. Иод, селен и мышьяк распространены очень мало (сюда же можно отнести радиоактивные и неустойчивые конфигурации, которые расположены в последних периодах таблицы).
В соединениях неметаллы ведут себя преимущественно как кислоты. Являются мощными окислителями за счет возможности присоединения дополнительного числа электронов для завершения уровня.
Сложные вещества в неорганике
Помимо веществ, которые представлены одной группой атомов, различают соединения, включающие несколько различных конфигураций. Такие вещества могут быть бинарными (состоящими из двух разных частиц), трех-, четырехэлементными и так далее.
Двухэлементные вещества
Особенное значение бинарности связи в молекулах придает химия. Классы неорганических соединений также рассматриваются с точки зрения образованной между атомами связи. Она может быть ионной, металлической, ковалентной (полярной или неполярной) или смешанной. Обычно такие вещества четко проявляют основные (при наличии металла), амфортерные (двойственные – особенно характерно для алюминия) или кислотные (если есть элемент со степенью окисления от +4 и выше) качества.
Трехэлементные ассоциаты
Темы неорганической химии предусматривают рассмотрение и данного вида объединения атомов. Соединения, состоящие из более чем двух групп атомов (чаще всего неорганики имеют дело с трехэлементными видами), обычно образуются при участии компонентов, значительно отличающихся друг от друга по физико-химическим параметрам.
Возможные виды связи – ковалентный, ионный и смешанный. Обычно трехэлементные вещества по поведению похожи на бинарные за счет того, что одна из сил межатомного взаимодействия значительно прочнее другой: слабая формируется во вторую очередь и имеет возможность диссоциировать в растворе быстрее.
Классы неорганической химии
Подавляющее большинство изучаемых в курсе неорганики веществ можно рассмотреть по простой классификации в зависимости от их состава и свойств. Так, различают гидроксиды, кислоты, оксиды и соли. Рассмотрение их взаимосвязи лучше начать со знакомства с понятием окисленных форм, в которых могут оказаться почти любые неорганические вещества. Химия таких ассоциатов рассматривается в главах об оксидах.
Оксиды
Окись представляет собой соединение любого химического элемента с кислородом в степени окисленности, равной -2 (в пероксидах -1 соответственно). Образование связи происходит за счет отдачи и присоединения электронов с восстановлением О2 (когда наиболее электроотрицательным элементом является кислород).
Могут проявлять и кислотные, и амфотерные, и основные свойства в зависимости от второй группы атомов. Если это металл, в оксиде он не превышает степени окисления +2, если неметалл – от +4 и выше. В образцах с двойственной природой параметров достигается значение +3.
Кислоты в неорганике
Кислотные соединения имеют реакцию среды меньше 7 за счет содержания катионов водорода, которые могут перейти в раствор и впоследствии замениться ионом металла. По классификации являются сложными веществами. Большинство кислот можно получить путем разбавления соответствующих оксидов водой, например, при образовании серной кислоты после гидратации SO3.
Основная неорганическая химия
Свойства данного вида соединений обусловлены наличием гидроксильного радикала ОН, который дает реакцию среды выше 7. Растворимые основания называются щелочами, они являются наиболее сильными в этом классе веществ за счет полной диссоциации (распада на ионы в жидкости). Группа ОН при образовании солей может заменяться кислотными остатками.
Неорганическая химия – это двойственная наука, которая может описать вещества с разных точек зрения. В протолитической теории основания рассматриваются в качестве акцепторов катиона водорода. Такой подход расширяет понятие об этом классе веществ, называя щелочью любое вещество, способное принять протон.
Данный вид соединений находится межу основаниями и кислотами, так как является продуктом их взаимодействия. Так, в качестве катиона выступает обычно ион металла (иногда аммония, фосфония или гидроксония), а в качестве анионного вещества – кислотный остаток. При образовании соли водород замещается другим веществом.
В зависимости от соотношения количества реагентов и их силы по отношению друг к другу рационально рассматривать несколько видов продуктов взаимодействия:
- основные соли получаются, если гидроксильные группы замещены не полностью (такие вещества имеют щелочную реакцию среды);
- кислые соли образуются в противоположном случае – при недостатке реагирующего основания водород частично остается в соединении;
- самыми известными и простыми для понимания являются средние (или нормальные) образцы — они являются продуктом полной нейтрализации реагентов с образованием воды и вещества только с катионом металла или его аналогом и кислотным остатком.
Неорганическая химия – это наука, предполагающая деление каждого из классов на фрагменты, которые рассматриваются в разное время: одни – раньше, другие – позже. При более углубленном изучении различают еще 4 вида солей:
- Двойные содержат единственный анион при наличии двух катионов. Обычно такие вещества получаются в результате сливания двух солей с одинаковым кислотным остатком, но разными металлами.
- Смешанный тип противоположен предыдущему: его основой является один катион с двумя разными анионами.
- Кристаллогидраты – соли, в формуле которых есть вода в кристаллизованном состоянии.
- Комплексы – вещества, в которых катион, анион или оба из них представлены в виде кластеров с образующим элементом. Такие соли можно получить преимущественно у элементов подгруппы В.
В качестве других веществ, включенных в практикум по неорганической химии, которые можно классифицировать как соли или как отдельные главы знания, можно назвать гидриды, нитриды, карбиды и интерметаллиды (соединения нескольких металлов, сплавом не являющиеся).
Итоги
Неорганическая химия – это наука, которая представляет интерес для каждого специалиста данной сферы вне зависимости от его интересов. Она включает в себя первые главы, изучаемые в школе по данному предмету. Курс неорганической химии предусматривает систематизацию больших объемов информации в соответствии с понятной и простой классификацией.
Источник