- Свойства арифметического квадратного корня
- 0. Кратная вводная
- 1. Корни из точных степеней
- 1.1. Корень из точного квадрата
- 1.2. Корень из чётной степени
- 2. Корни из произведения и частного
- 2.1. Умножение и деление корней
- 2.2. Проблемы с областью определения
- 3. Работа с переменными
- 3.1. Раскрытие модуля через свойства степеней
- 3.2. Учёт дополнительных ограничений
- 3.3. Упрощение выражений
Свойства арифметического квадратного корня
0. Кратная вводная
Перед любыми манипуляциями с корнями полезно вспомнить свойства степеней с натуральным показателем. Я группирую эти свойства в три блока.
1. Умножаем и делим степени с одинаковым основанием — меняется только показатель:
2. Умножаем и делим степени с одинаковым показателем — меняется основание:
3. Чётные степени «сжигают» минусы, нечётные — нет:
Мы будем использовать эти свойства на всю катушку в третьей части урока. А пока начнём с более простых вещей.
1. Корни из точных степеней
При работе с корнями многие ученики допускают одну и ту же ошибку. Они пытаются подменить чёткие правила алгебры интуитивными размышлениями. И на первый взгляд всё выглядит хорошо. Взгляните на примеры:
Во всех трёх случаях мы видим, что под корнем стоят точные квадраты. Их можно переписать так:
Может показаться, что для упрощения выражения достаточно убрать степень и знак корня. На практике это не так:
Из третьей строки видно, что просто убрать степень и корень с отрицательного основания нельзя, ведь корень не может быть отрицательным! Вторая строка объясняет нам, что именно происходит: квадрат делает число под корнем положительным, а дальше мы извлекаем этот самый корень и вновь получаем положительное число. В итоге строки 1 и 2 ведут к извлечению корня из одного и того же числа — 64.
1.1. Корень из точного квадрата
А вывод такой: корень из квадрата не меняет положительные числа, а отрицательные меняет на противоположные. Это в точности совпадает с определением модуля:
Для удобства дальнейших размышлений предлагаю взять на вооружение вот такое определение модуля:
Это определение чрезвычайно полезно для решения сложных задач с параметрами. Об этом как-нибудь в следующий раз. А пока давайте потренируемся:
Опыт моих учеников: поначалу довольно непривычно выписывать эти множители (1, 0 и −1), но затем человек привыкает и пишет всё на автомате. А затем и вовсе перестаёт писать — всё происходит в его голове, но навык добавления множителей остаётся (и очень пригодится, когда мы считаем коэффициенты многочленов).
Задание. Найдите значение выражения:
Отдельное внимания заслуживают двойные корни, вложенные друг в друга:
Для них замена корня модулем тоже работает, но возникает вопрос: как корректно раскрыть модуль? Придётся сравнивать корни:
Откуда такое смелое утверждение во второй строке? Существует два способа доказать неравенство в красных скобках:
- 1.Использовать свойства корней;
- 2.Составить цепочку неравенств.
Сравнение корней — отдельная серьёзная тема. Ей посвящён целый урок. Поэтому давайте просто решим второе задание:
Задание. Вычислите значение выражения:
1.2. Корень из чётной степени
Идём дальше. Вновь запишем нашу волшебную формулу:
Капитан очевидность как бы намекает: эта формула верна не только для квадратов, но и для всех чётных степеней:
Другими словами, корень из любой чётной степени понижает эту степень ровно в два раза, но взамен навешивает на неё модуль! Рассмотрим примеры:
Обратите внимание на последнюю строку: изначально под корнем стоит довольно громоздкое число. Вычислять его напролом — возводить в квадрат, а затем извлекать корень — безумие. Но формула понижения степени редуцирует задачу до устной — отличная экономия времени на экзамене.:)
Задание 2. Найдите значение выражения:
Вывод: если видите корень из степени, то смело понижайте степень вдвое, убирайте корень, но взамен ставьте модуль. Всегда. Обязательно. Ок? Переходим ко второй части урока.
2. Корни из произведения и частного
Перед тем как давать какие-либо новый формулы, напомню важный факт. Корень из суммы не равен сумме корней:
Иначе мы бы получили вот такие бредовые выкладки:
Вроде бы, капитаноочевидно, но многие даже в старших классах допускают такие ошибки.
А теперь разберём ещё два свойства корней.
2.1. Умножение и деление корней
Корни можно умножать и делить. Правила просты:
Задание 3. Найдите значение выражения:
Как видите, с помощью формул мы разбиваем сложный корень на несколько простых.
Мы знаем, то все формулы работают как слева-направо, так и справа-налево, поэтому корни можно «склеивать». При этом новый корень может легко вычисляться, хотя исходные части — не вычисляются вообще. Например:
Попробуйте повторить этот трюк:
Задание 4. Найдите значение выражения:
2.2. Проблемы с областью определения
Но есть одна тонкость. Взгляните, например, на формулу произведения корней:
Напомню: знак радикала обозначает арифметический квадратный корень, который извлекается только из неотрицательных чисел и сам является числом неотрицательным.
С левой стороны от знака равенства стоит один корень, а справа — целых два. Поэтому области определения левой и правой части этого равенства различны:
В чём конкретно состоит различие?
В первой строке мы видим произведение, поэтому неравенство (1) верно всякий раз, когда знаки множителей совпадают. В частности, оба множителя могут быть отрицательными, но их произведение всё равно будет положительным.
Вторая строка — система из двух неравенств, и здесь отрицательные числа нас уже не устроят. Вывод:
Красным я выделил ситуацию, которая допустима для корня из произведения, но становится недопустимой для произведения корней.
Поскольку любое равенство определено лишь тогда, когда определена и левая, и правая его части, дополним исходные правила специальными требованиями:
И вот в таком виде их уже можно использовать — везде и всегда!
Может показаться, что эти ограничения несущественны. Или искусственны. Чуть выше мы никак их не учитывали и всё прекрасно посчитали. Поэтому вопрос: когда ограничения области определения становятся существенным?
Ответ: когда под корнями стоят не конкретные числа, а переменные. К примеру, пусть даны числа:
Очевидно, что произведение двух отрицательных чисел будет положительным. И хотя корень из произведения будет определён, извлекать корни из отдельных множителей нельзя:
Значит, нужно сделать так, чтобы множители под корнем стали положительными. И тут нам на помощь приходит старое доброе число −1:
Добавление минусов к каждому из двух множителей нисколько не повлияло на произведение, но привело к возникновению двух новых множителей, каждый из которых уже точно положителен:
Помните об этом преобразовании, когда сталкиваетесь с произведением отрицательных выражений под знаком корня. Источником такой отрицательности могут быть условия задачи, либо следствия из области определения (такое часто встречается в логарифмических уравнениях и неравенствах, которые изучаются в 10—11 классах).
Ну а мы немного потренируемся и пойдём к третьей части урока — работе с переменными.
Задание 5. Найдите значение выражения:
Переходим к самому весёлому.:)
3. Работа с переменными
Если не считать определения, то мы знаем о корнях две вещи. Во-первых, корни понижают степени, но добавляют модули:
Во-вторых, корни можно умножать и делить. Но не всегда:
До сих пор мы тренировались лишь на конкретных числах. И многие могут удивляться: зачем все эти рассуждения про модули и ограничения?
Сейчас мы заменим числа буквами — и задача резко усложнится. Или не усложнится — если вы внимательно изучите то, что написано дальше.:)
3.1. Раскрытие модуля через свойства степеней
Начнём с простого. Мы уже знаем, как избавляться от точной степени:
Попробуем применить эту формулу к двум различным выражениям:
В первой строке мы без труда раскрыли модуль, поскольку знаем, что число под модулем отрицательно. Затем посчитали — получили ответ.
Но как раскрыть модуль во второй строке? Ведь правила раскрытия будут меняться в зависимости от того, какое значение принимает переменная. И если никаких дополнительных ограничений на переменную нет, то модуль так и останется нераскрытым. Взгляните:
Замените выражение тождественно равным, не содержащим знака корня:
Из приведённых примеров видно:
- В строках (2) и (4) мы можем раскрыть модуль, ничего не зная о переменной;
- В строках (1) и (3) раскрыть модуль не удалось.
Почему? Чётные степени в строках (2) и (4) при любом значении переменной будут положительным числом или нулём. Поэтому модуль однозначно раскрывается со знаком «плюс».
Нечётная степень в строках (1) и (3) таким свойством не обладает: она может оказаться как положительным числом, так и отрицательным. Поэтому модуль раскрыть нельзя.
Задание. Замените выражение тождественно равным, не содержащим знака корня:
Чётные степени всегда неотрицательны, нечётные степени могут принимать любой знак:
Тем не менее, модуль нечётной степени тоже можно раскрыть. Если в задаче есть дополнительные условия.
3.2. Учёт дополнительных ограничений
Зачастую в самом условии задачи содержатся ограничения на переменную, которые помогают однозначно раскрыть модуль. Пример:
Работаем по тем правилам, которые изучали выше:
Обратите внимание: в строке (2) чётные степени под корнем дают три неотрицательных числа, поэтому корень можно разбить на три изолированных множителя — область определения при этом не поменяется; затем в строке (3) мы видим чётную степень под модулем и раскрываем его.
Ещё раз запишем результат и дополним его исходными условиями:
В первом случае выражение под модулем положительно или ноль, поэтому модуль однозначно раскрывается со знаком «плюс». Во втором — отрицательно или ноль, поэтому модуль раскрывается со знаком «минус»:
Возможно, у вас возникает вопрос: почему мы пишем множитель 1 или −1, но не рассматриваем отдельно множитель 0? В этом фишка модуля:
Таким образом, в нуле модуль можно раскрывать любым удобным способом.
Задание. Упростите выражение:
Это были весьма примитивные выражения, сводящиеся к раскрытию модуля. На них мы отработали важный новый навык. Теперь воспользуемся этим навыком для решения более интересных задач.
3.3. Упрощение выражений
Последний и самый интересный раздел этого урока.
Откуда берутся дополнительные ограничения на переменные? Существует ровно два источника таких ограничений:
- 1.Условие задачи. Например, если переменная — это длина отрезка на чертеже, то можно без ущерба для здоровья полагать, что она неотрицательна (а если всё-таки отрицательна, то у вас неправильный чертёж).
- 2.Неявные следствия из исходного выражения / уравнения / неравенства. Тут всё намного интереснее: анализ следствий из исходного условия — увлекательный процесс, доступный лишь хорошо подготовленным ученикам.
Начнём с первого пункта — ограничений, явно указанных в условии задачи. Примеры:
С первым выражением всё просто:
Со вторым уже интереснее. Заметим, что в первом числителе стоит формула сокращённого умножения, а дробь под корнем гарантированно имеет неотрицательный числитель и знаменатель:
Вспомним исходные ограничения:
И раскроем модули:
Как видите, нам удалось избавиться не только от модулей, но и от дробей.:)
Материал, представленный дальше, относится скорее к следующему уроку — «Внесение и вынесение множителей из-под знака корня». Его изучение прямо сейчас не является обязательным, но может оказаться весьма полезным для сильных учеников.
Наконец, разберёмся с неявными ограничениями. Ещё раз запишем самую первую формулу:
Пусть известно, что подмодульное выражение неотрицательно. Тогда модуль можно убрать:
С отрицательными величинами тоже можно провернуть такой трюк:
Но любое равенство работает как слева-направо, так и справа-налево. Следовательно, если нам известен знак переменной, мы можем внести её под знак корня:
Это замечание позволит упрощать выражения, которые неподготовленному ученику покажутся неприступными.
Остаётся лишь один вопрос: где взять знак переменной? Ответ: ограничения на переменную часто скрыты в области определения. Например:
В первой строке мы видим корень, поэтому выпишем область определения. Это даст нам ограничения на переменную и поможет внести её под знак корня:
То же самое со вторым выражением:
В итоге мы получили выражение, тождественно равное нулю. Однако помните: это равенство сохраняется только для отрицательных значений переменной! Для положительных значений исходное выражение вообще не определено.
Операция, которую мы только что провернули, как раз и называется внесением переменной под знак радикала.
В заключение хотел бы рассмотреть типичную ситуацию для сложных алгебраических задач, когда под корнем стоят, на первый взгляд, противоположные числа.
Заметим, что самый первый корень накладывает жёсткие ограничения на переменную:
Под остальными корнями стоят неотрицательные выражения, поэтому дальше всё просто:
Наличие неявного ограничения позволило нам раскрыть модуль даже у нечётной степени. Обратите внимание на этот переход:
Как мы помним из краткой вводной, минусы можно выносить (и вносить) из основания нечётной степени. Это можно сделать как после раскрытия модуля, так и в самом начале — прямо под корнем:
Красным я отметил одинаковые выражения, стоящие под корнем и в основании степени. Именно такая форма записи (а не игра с минусами) является предпочтительной, например, в логарифмических уравнениях и неравенствах.
Но это тема совсем другого урока. А на сегодня хватит.:)
Источник