Что значит мертвое пространство дыхательного фильтра

Что значит мертвое пространство дыхательного фильтра

Изучение мертвого пространства в дыхательном тракте человека связано со многими неясностями и противоречиями. Некоторые его аспекты не решены еще до настоящего времени.

Определение Vd возможно при помощи нескольких методов, но оно редко осуществимо в условиях подводного погружения. Наиболее широко используют метод как можно более точного вычисления Vd. В водолазной практике рассматривают два вида мертвого пространства: собственно индивидуальное мертвое пространство водолаза и мертвое пространство его дыхательного аппарата.

В настоящее время существует единое мнение в отношении вопроса об объемах дыхательного мертвого пространства у здоровых людей, находящихся в состоянии покоя. Величина их объемов зависит от размера тела водолаза. Radford в 1955 г. заметил, что у взрослых людей объем мертвого пространства (в миллилитрах), как правило, приблизительно равен массе тела человека, выраженной в фунтах. Множество разногласий среди ученых вызывает изменение мертвого пространства во время физической нагрузки, и они до сих пор еще полностью не решены.

Эти разногласия частично обусловлены тем, что некоторые авторы используют значение Ретсо2 (Рсо2 в конце дыхательного объема) вместо величины Расо2 в уравнении, предложенном Bohr. В действительности во время физической нагрузки РАСО2 может отличаться от Ретсо2. Возможно, что наиболее приемлемой является информация, полученная при обследовании здоровых молодых мужчин, проведенном в 1956 г. Asmussen, Nielsen. Эти авторы установили, что средние величины общего или физиологического мертвого пространства составляли от 170 мл (в состоянии покоя) до 350 мл во время тяжелой физической нагрузки.

Читайте также:  Что такое сальпингоофорит у женщин что это значит

Самая высокая из зарегистрированных величин составляла 450 мл. Увеличение объема мертвого пространства носило характер линейной зависимости от дыхательного объема, изменяющегося в пределах приблизительно 0,5—3,3 л на один акт дыхания.

Аналогичных измерений в водолазной практике еще не проводилось, поэтому приходится считать указанные величины приемлемыми для практики. Логично допустить, что величина индивидуального мертвого пространства у работающего водолаза составляет 0,3 л при BTPS.

Неожиданно большое значение VD недавно получено при расчете по уравнению, предложенному Bohr, у водолазов, находящихся в сухой камере под абсолютным давлением 46,7 кгс/см2. Позже такое же значение получили Salzano и соавт. (1981) в исследованиях, проводимых по программе «Atlantis» у водолазов, находящихся в сухой камере под более высоким давлением. Авторы полагают, что полученные результаты могли быть обусловлены крайне высокой плотностью дыхательных газовых смесей.

Применение дыхательного аппарата обусловливает значительное дополнение объема мертвого пространства водолаза. Любую часть аппарата, имеющую двусторонне направленную вентиляцию, следует считать «мертвой» до тех пор, пока не будет доказано противоположное. Вопрос ставится однозначно: будет ли во время выдоха эта часть аппарата содержать выдыхаемую двуокись углерода, которая затем возвращается в дыхательные пути водолаза при вдохе? Мертвое пространство почти неизбежно присутствует в конструкциях обычных соединенных с загубником легочных автоматов.

В таких случаях объем мертвого пространства, как правило, достигает 0,1 л и попытки его уменьшения значительно повышают риск чрезмерного сужения воздухоносных путей аппарата.

Величина явного объема мертвого пространства аппарата может быть определена либо с помощью заполнения его водой, либо расчетным путем. Иногда при осмотре нельзя с уверенностью определить является ли конкретный объем «функционально мертвым» или нет, или только отчасти таковым. В этих ситуациях следует использовать метод, при помощи которого определяют дыхательное мертвое пространство у человека. Водолазная маска, закрывающая все лицо, осложняет определение мертвого пространства. В случаях, когда объем мертвого пространства в отдельных образцах дыхательных аппаратов достигает 0,5 л, оно чаще представляет собой сплошной внутренний объем газа между маской и лицом, чем при использовании дыхательных аппаратов с надежным разделением между ротоносовой и глазной областями лица.
В этих случаях вдыхаемый и выдыхаемый газы могут не смешиваться в целом по всему объему, и мертвое пространство будет относительно небольшим.

Основное затруднение, связанное с наличием очень большого мертвого пространства, обусловленного дыхательным аппаратом, состоит не столько в повышении требования к вентиляции, сколько в невозможности для водолаза полностью компенсировать нужную вентиляцию легких, что приводит к росту РАсо2. В одном из исследований было установлено, что прибавление к объему подводной дыхательной системы 0,5 л мертвого пространства увеличивает среднее Расо2 (измеренное к концу дыхательного объема) на 6 мм рт. ст. Это существенное увеличение, особенно при уже высоком Расо2 .

Источник

Мертвое пространство легких и его значение в процессе дыхания

Для начала надо определиться, как более правильно называть участок дыхательный путей в которых не происходит газообмен — анатомическое мертвое пространство или физиологическое/функциональное?

Если мыслить логически, то анатомически пространство никак не может быть мертвым. Оно либо есть, либо его нет. А вот с точки зрения физиологии или функциональности, да, действительно, пространство может быть «мертвым», т.к. является с определенной точки зрения «бесполезным», пустым, неиспользуемым, нефункциональным. Но хоть в дыхательных путях и не происходит газообмена между кровью и вдыхаемым воздухом, все же оно не бесполезное, т.к. выполняет определенные функции, о которых подробно будет написано ниже.

Что такое функциональное МП

Как уже было написано выше, под функциональным мертвым пространством легких подразумевается часть дыхательной системы, которая не участвует в процессе газообмена между капиллярной кровью и альвеолярным воздухом. Другими словами, это пространство которое участвует в транспортировке воздуха от атмосферы к альвеолам и обратно. Если еще проще, то это дыхательный «трубопровод» для легких.

Объем

Для взрослого человека общий объем мертвого пространства разнится в зависимости от роста, веса и анатомических особенностей дыхательных путей и составляет от 120 до 180 мл. В среднем, эту величину считают равной 150 мл.

Ученые-медики вывели усредненную формулу, которая помогает более менее точно определить объем физиологического мертвого пространства, зная только вес взрослого человека. V=2,2*m(кг). Или просто посчитайте на этом калькуляторе, где достаточно только указать свой вес:

Еще раз повторюсь, что это для взрослых людей.

У детей этот физиологический объем значительно ниже. Для них, к сожалению, не применима простая формула вычисления искомого объема по весу тела, но есть сложная логарифмическая формула, которая учитывает его изменение в зависимости от возраста ребенка.

Не стану расписывать результаты логарифмического вычисления для детей разных возрастов, но методику вычисления, любезно предоставленную на одном научном англоязычном сайте, приведу — вдруг кому-то из моих читателей она будет действительно полезна: V = 3,28 — 0,56 [ln (1 + возраст)].

Какие органы входят

Как уже понятно из определения, в ФМП входят все воздухопроводящие органы, в которых не происходит газообмен между кровью капилляров и воздухом альвеол. Таким образом, «живым» является только объем альвеол, а все остальное является «мертвым».

Итак, перечислим эти органы:

  1. Полость носа и придаточные пазухи носа (ротовая полость — если дыхание через рот)
  2. Носоглотка
  3. Гортань
  4. Трахея
  5. Бронхи
  6. Бронхиолы

Носовая и ротовая полость, носовые пазухи, носоглотка и гортань формируют внегрудное МП. Трахея, бронхи и бронхиолы — внутригрудное. Для взрослых это не имеет особого значения, т.к. независимо от комплекции тела, внегрудное и внутригрудное МП находятся приблизительно в одинаковых пропорциях. А вот для детей это имеет значение, т.к. размеры головы, а значит и части верхних дыхательных путей, несоразмерно больше грудной полости и объема бронхиального дерева. Именно поэтому для детей применяется такая сложная формула расчета объема ФМП.

Помимо всех этих классификаций, в физиологии выделяется еще одно — мертвое пространство легких. С анатомической точки зрения — это бронхиальное дерево расположенное в легких, т.е. начиная от долевых бронхов и заканчивая бронхиолами.

Выполняемые функции

Как уже было сказано выше, ФМП не является «бесполезным» пространством, а выполняет очень важные функции без которых дыхательный процесс в легких был бы просто невозможен. Как и обещал, сейчас мы подробно рассмотрим в чем же заключается его польза для человеческого организма.

Нормализация температуры

Пока вдыхаемая воздушная смесь доходит до альвеол, она нагревается в этом «бесполезно-полезном» физиологическом пространстве до температуры тела.

Впрочем это может быть не обязательно нагрев, но и охлаждение, т.к. воздух вокруг человека может быть горячее тела (жаркий день, жаркое помещение, в пустыне и т.д.), а следовательно вдыхаемую воздушную смесь необходимо будет охладить до температуры тела.

Действительно важная роль, т.к. альвеолы не смогут функционировать, если в них, к примеру, будет попадать воздушная смесь с температурой 15 градусов С. Мало того что биохимические процессы практически остановились бы, так и капилляры …. хотел написать спазмируются, но нет, не спазмируются. В них же нет мышечного слоя. Но кровоток в любом случае замедлится, гемоглобин перестанет выполнять свои функции, а также возникнет реальная угроза инфекционного процесса — пневмонии.

Увлажнение воздуха

По мере прохождения воздуха по верхним дыхательным путям, а также бронхам и бронхиолам, он увлажняется до 100%. Так что в альвеолы он поступает уже абсолютно увлажненным.

Тоже незаменимая роль, т.к. при поступлении в альвеолы воздуха даже 90% влажности они просто не смогут выполнять свою прямую обязанность — осуществлять перенос кислорода в кровь, а углекислого газа в полость альвеолы. Даже в научно-медицинских источниках очень мало подробной информации о необходимой влажности поступающего в альвеолы воздуха, но если представить физиологический процесс дыхания, то становится понятно, что даже при 95% влажности все равно было бы постепенное пересыхание стенок альвеолярного мешочка. Так что только 100% влажность и никак иначе.

В обоих случаях, что приведения температуры вдыхаемого воздуха до температуры тела, что его увлажнение до 100% влажности, титаническую роль играет бронхиальное дерево. Именно оно, за счет сильно разветвленной сети бронхов и бронхиол, успевает довести эти показатели до необходимой нормы.

Альвеолярное мертвое пространство

Как было указано в определении, функциональное мертвое пространство — это часть дыхательной системы, которая не участвует в газообмене.

Альвеолы — это как раз та часть легких, в которой и происходит газообмен, поэтому назвать их мертвым пространством, именно с этой точки зрения, никак нельзя. Но с другой стороны, есть неработающие альвеолы и есть «остаточный» объем воздуха в этих альвеолах, которые как раз и не работают в процессе дыхания.

«Мертвые» альвеолы

По ряду причин (тромбозы, фиброз и т.д.) кровообращение в части альвеол может быть нарушено, в следствие чего газообмена так происходить не будет. Суммарный объем воздуха таких альвеол можно считать альвеолярным мертвым пространством.

«Пустой» объем

При спокойном выдохе в альвеолах остается остаточный воздух, который содержит кислорода значительно меньше, чем содержится во вдыхаемом воздухе. Следовательно, в каком-то смысле этот объем альвеолярного пространства можно считать «мертвым».

После спокойного выдоха человек может выдохнуть еще около 1300 мл воздуха. Именно такой объем воздуха остается в альвеолах после выдоха при спокойном дыхании.

Выводы

Как уже понятно из вышепрочитанного, «мертвым» оно является исключительно из-за отсутствия в нем процесса газообмена. Но как говорится: «Кесарю-кесарево», что в данной ситуации означает, что в нем и не должно быть газообмена, т.к. выполняет оно совсем другие функции.

Еще один важный момент, который необходимо учитывать — при ряде заболеваний дыхательной системы (например, выраженных бронхоэктазах), «бесполезный» объем будет значительно выше, что обязательно скажется на сатурации и в длительной перспективе может привести к хроническому кислородному голоданию, что чревато своими последствиями. Если, к примеру, количество обедненного кислородом воздуха увеличится со 150 мл до 250 мл, то при дыхательном объеме в 500 мл соотношение к обогащенной воздушной смеси к обедненной изменится с 2,33 до 1,0. Это очень весомо.

Автор

Все представленные на сайте материалы предназначены исключительно для образовательных целей и не предназначены для медицинских консультаций, диагностики или лечения. По всем медицинским вопросам обязательно проконсультируйтесь со специалистом!

Источник

Роль мертвого пространства в формировании и диагностике дыхательной недостаточности

Полный текст:

Аннотация

Об авторах

Список литературы

2. Шик Л. Л., Канаев Н. Н.(ред.) Руководство по клинической физиологии дыхания. Л.: Медицина; 1980.

3. Зильбер А. П., Шурыгин И. А.Высокочастотная вентиляция легких. Петрозаводск; 199

4. Корячкин В. А.Краткий толковый словарь врача анестезиолога-реаниматолога. СПб.; 2005.

5. Виницкая Р. С.Значение определения альвеоло-артериальной разницы респираторных газов в функциональной диагностике дыхания. Современные проблемы клинической физиологии дыхания. 1987; 95—102.

6. Левитэ Е. М.Краткий толковый словарь анестезиологов-реаниматологов. М.: Геотар-Медиа; 200

7. Левитэ Е. М.Введение в анестезиологию-реаниматологию. М.: Гео-тар-Медиа; 200

8. Wensel R., Georgiadou P., Francis D. P. et al.Differential contribution of dead space ventilation and low arterial pCO2 to exercise hyperpnea in patients with chronic heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am. J Cardiol. 2004; 93 (3): 318—323.

9. Riou Y., Leclerc F., Neve V. et al.Reproducibility of the respiratory dead space measurements in mechanically ventilated children using the CO2SMO monitor. Intensive Care Med. 2004; 30 (7): 1461—1467.

10. Hedenstierna G., Sandhagen B.Assessing dead space. A meaningful variable Minerva Anestesiol.2006; 72 (6): 521—528.

11. Kallet R. H.Accuracy of physiologic dead space measurements in patients with acute respiratory distress syndrome using volumetric capnography: comparison with metabolic monitor method. Resp. Care. 2005; 50 (4): 462—467.

12. Verschuren F.Volumetric capnography: reliability and reproducibility in spontaneously breathing patients. Clin. Physiol. Funct. Imaging. 2005; 25 (5): 275—280.

13. Blanch L.Volumetric capnography in mechanically ventilated patients. Minerva Anestesiol. 2006; 72 (6): 577—585.

14. Wathanasormsiri A., Preutthipan A., Chantarojanasiri T.Dead space ventilation in volume controlled versus pressure controlled mode of mechanical ventilation. J. Med. Assoc. Thai. 2002; 85 (4): 1207—1212.

15. Hardman I, Aitkenhead A. Estimating alveolar dead space from the arterial to end-tidal CO2gradient: a modeling analysis. Anesth. Analg. 2003; 97 (6): 1846—1851.

Для цитирования:

Левитэ Е.М., Уклонский А.Н., Кулаков В.Ф. Роль мертвого пространства в формировании и диагностике дыхательной недостаточности . Общая реаниматология. 2009;5(2):76. https://doi.org/10.15360/1813-9779-2009-2-76

For citation:

Levite Y.M., Uklonsky A.N., Kulakov V.F. Role of Dead Space in the Development and Diagnosis of Respiratory Failure . General Reanimatology. 2009;5(2):76. (In Russ.) https://doi.org/10.15360/1813-9779-2009-2-76


Контент доступен под лицензией Creative Commons Attribution 4.0 License.

Источник

Оцените статью